Estimation of gross primary production in wheat from in situ measurements

Author(s):  
Chaoyang Wu ◽  
Xiuzhen Han ◽  
Jinsheng Ni ◽  
Zheng Niu ◽  
Wenjiang Huang
2021 ◽  
Vol 13 (5) ◽  
pp. 963
Author(s):  
Yu Bai ◽  
Shunlin Liang ◽  
Wenping Yuan

The gross primary production (GPP) is important for regulating the global carbon cycle and climate change. Recent studies have shown that sun-induced chlorophyll fluorescence (SIF) is highly advantageous regarding GPP monitoring. However, using SIF to estimate GPP on a global scale is limited by the lack of a stable SIF-GPP relationship. Here, we estimated global monthly GPP at 0.05° spatial resolution for the period 2001–2017, using the global OCO-2-based SIF product (GOSIF) and other auxiliary data. Large amounts of flux tower data are not available to the public and the available data is not evenly distributed globally and has a smaller measured footprint than the GOSIF data. This makes it difficult to use the flux tower GPP directly as an input to the model. Our strategy is to scale in situ measurements using two moderate-resolution satellite GPP products (MODIS and GLASS). Specifically, these two satellite GPP products were calibrated and eventually integrated by in situ measurements (FLUXNET2015 dataset, 83 sites), which was then used to train a machine learning model (GBRT) that performed the best among five evaluated models. The GPP estimates from GOSIF were highly accurate coefficient of determination (R2) = 0.58, root mean square error (RMSE) = 2.74 g C·m−2, bias = –0.34 g C·m−2) as validated by in situ measurements, and exhibited reasonable spatial and seasonal variations on a global scale. Our method requires fewer input variables and has higher computational efficiency than other satellite GPP estimation methods. Satellite-based SIF data provide a unique opportunity for more accurate, near real-time GPP mapping in the future.


1963 ◽  
Vol 14 (2) ◽  
pp. 139 ◽  
Author(s):  
HR Jitts

Simultaneous measurements with two types of incubators were made on replicate samples both in the incubators and in situ in the ocean. Both incubators used sunlight and blue glass filters to simulate light conditions at depths in the ocean. The first gave measurements of column production 1.58 times those in situ. This was due to the fact that at depths greater than 20 m the incubator gave much higher results with no significant relation to those measured in situ. In the second incubator the accuracy of reproduction of oceanic light conditions was improved by reducing reflected light and using a balance-by-depth twin photometer system for determining the depths of sampling. The measurements of column production in the second incubator were 1.03 times the in situ values.


Polar Biology ◽  
2015 ◽  
Vol 39 (3) ◽  
pp. 543-552 ◽  
Author(s):  
T. Riis ◽  
K. S. Christoffersen ◽  
A. Baattrup-Pedersen

1976 ◽  
Vol 33 (12) ◽  
pp. 2740-2746 ◽  
Author(s):  
Alan W. Maki ◽  
Howard E. Johnson

The effects of a toxicant, the lampricide TFM (3-trifluoromethyl-4-nitrophenol), on the metabolism of benthic communities were studied in a series of six indoor model streams resembling typical woodland streams. Each artificially illuminated stream consisted of a 4-m pool section and a 4-m riffle section.A specially developed in situ stream respirometer was used for measurements of net primary production and community respiration in pool and riffle communities. Pretreatment levels of gross primary production ranged during summer, fall, and early winter from 10.7 to 79.0 mg O2∙m−2∙h−1 and were suppressed by 25–50% during exposure to 9.0 mg/liter TFM. Community respiration ranged from 10.5 to 36.2 mg O2∙m−2∙h−1 during the same time period and was increased 3–50% by the 9.0 mg/liter lampricide treatment. Calculated photosynthesis to respiration (P:R) ratios proved to be sensitive indicators of the influence of the toxicant. The stream communities demonstrated a capacity to adjust to the toxicant influence as evidenced by the rapid return of metabolic rates to pretreatment levels following the exposure period.


2020 ◽  
Vol 656 ◽  
pp. 95-107 ◽  
Author(s):  
F Bordeyne ◽  
A Migné ◽  
M Plus ◽  
D Davoult

Intertidal communities dominated by canopy-forming brown algae (Phaeophyceae) usually prove to be highly productive systems, based on short-term measurements. However, long-term metabolism (primary production and respiration) is sensitive to several factors acting on different time scales (e.g. tidal cycle, seasonality), making its assessment challenging. Here, we used mathematical modelling to investigate the metabolism of a Fucus serratus-dominated community on daily and annual time scales. This widespread community, which is usually characteristic of the low mid-intertidal level of temperate rocky shores, is submerged for approximately 83% of the time at our study site (Brittany, France). The model incorporated a large spectrum of physiological (e.g. estimates of primary production versus irradiance parameters) and environmental (e.g. temperature, incident irradiance, depth of the water column) parameters measured in situ. The model simulation predicted that net community primary production (NCP) peaks at 8.0 gC m-2 d-1 in late spring, when environmental conditions are most favorable. In contrast, during fall and winter, respiration frequently overcomes primary production, making the system heterotrophic on a daily basis. For the year as a whole, simulation predicted that the community acts as an autotrophic system, with its annual gross primary production amounting to ca. 1301 gC m-2 and annual respiration to ca. 899 gC m-2. According to this simulation, the annual NCP of our intertidal F. serratus community therefore reached 402 gC m-2, which is comparable to subtidal communities dominated by canopy-forming brown algae. Although the F. serratus community lives mostly underwater, it was particularly autotrophic during aerial exposures.


2020 ◽  
Vol 12 (5) ◽  
pp. 826 ◽  
Author(s):  
Gemma Kulk ◽  
Trevor Platt ◽  
James Dingle ◽  
Thomas Jackson ◽  
Bror F. Jönsson ◽  
...  

Primary production by marine phytoplankton is one of the largest fluxes of carbon on our planet. In the past few decades, considerable progress has been made in estimating global primary production at high spatial and temporal scales by combining in situ measurements of primary production with remote-sensing observations of phytoplankton biomass. One of the major challenges in this approach lies in the assignment of the appropriate model parameters that define the photosynthetic response of phytoplankton to the light field. In the present study, a global database of in situ measurements of photosynthesis versus irradiance (P-I) parameters and a 20-year record of climate quality satellite observations were used to assess global primary production and its variability with seasons and locations as well as between years. In addition, the sensitivity of the computed primary production to potential changes in the photosynthetic response of phytoplankton cells under changing environmental conditions was investigated. Global annual primary production varied from 38.8 to 42.1 Gt C yr − 1 over the period of 1998–2018. Inter-annual changes in global primary production did not follow a linear trend, and regional differences in the magnitude and direction of change in primary production were observed. Trends in primary production followed directly from changes in chlorophyll-a and were related to changes in the physico-chemical conditions of the water column due to inter-annual and multidecadal climate oscillations. Moreover, the sensitivity analysis in which P-I parameters were adjusted by ±1 standard deviation showed the importance of accurately assigning photosynthetic parameters in global and regional calculations of primary production. The assimilation number of the P-I curve showed strong relationships with environmental variables such as temperature and had a practically one-to-one relationship with the magnitude of change in primary production. In the future, such empirical relationships could potentially be used for a more dynamic assignment of photosynthetic rates in the estimation of global primary production. Relationships between the initial slope of the P-I curve and environmental variables were more elusive.


2010 ◽  
Vol 55 (12) ◽  
pp. 2468-2483 ◽  
Author(s):  
SAIRAH Y. MALKIN ◽  
SERGHEI A. BOCANIOV ◽  
RALPH E. SMITH ◽  
STEPHANIE J. GUILDFORD ◽  
ROBERT E. HECKY

Sign in / Sign up

Export Citation Format

Share Document