A micrometeorological flux perspective on brush management in a shrub-encroached Sonoran Desert grassland

2022 ◽  
Vol 313 ◽  
pp. 108763
Author(s):  
Enrique R. Vivoni ◽  
Eli R. Pérez-Ruiz ◽  
Russell L. Scott ◽  
Adam T. Naito ◽  
Steven R. Archer ◽  
...  
2021 ◽  
Vol 9 ◽  
Author(s):  
Benjamin T. Wilder ◽  
Catherine S. Jarnevich ◽  
Elizabeth Baldwin ◽  
Joseph S. Black ◽  
Kim A. Franklin ◽  
...  

In the southwestern United States, non-native grass invasions have increased wildfire occurrence in deserts and the likelihood of fire spread to and from other biomes with disparate fire regimes. The elevational transition between desertscrub and montane grasslands, woodlands, and forests generally occurs at ∼1,200 masl and has experienced fast suburbanization and an expanding wildland-urban interface (WUI). In summer 2020, the Bighorn Fire in the Santa Catalina Mountains burned 486 km2 and prompted alerts and evacuations along a 40-km stretch of WUI below 1,200 masl on the outskirts of Tucson, Arizona, a metropolitan area of >1M people. To better understand the changing nature of the WUI here and elsewhere in the region, we took a multidimensional and timely approach to assess fire dynamics along the Desertscrub-Semi-desert Grassland ecotone in the Catalina foothills, which is in various stages of non-native grass invasion. The Bighorn Fire was principally a forest fire driven by a long-history of fire suppression, accumulation of fine fuels following a wet winter and spring, and two decades of hotter droughts, culminating in the hottest and second driest summer in the 125-yr Tucson weather record. Saguaro (Carnegia gigantea), a giant columnar cactus, experienced high mortality. Resprouting by several desert shrub species may confer some post-fire resiliency in desertscrub. Buffelgrass and other non-native species played a minor role in carrying the fire due to the patchiness of infestation at the upper edge of the Desertscrub biome. Coupled state-and-transition fire-spread simulation models suggest a marked increase in both burned area and fire frequency if buffelgrass patches continue to expand and coalesce at the Desertscrub/Semi-desert Grassland interface. A survey of area residents six months after the fire showed awareness of buffelgrass was significantly higher among residents that were evacuated or lost recreation access, with higher awareness of fire risk, saguaro loss and declining property values, in that order. Sustained and timely efforts to document and assess fast-evolving fire connectivity due to grass invasions, and social awareness and perceptions, are needed to understand and motivate mitigation of an increasingly fire-prone future in the region.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 501d-501
Author(s):  
Jonathan N. Egilla ◽  
Fred T. Davies

Six endomycorrhiza isolates from the Sonoran Desert of Mexico [Desert-14(18)1, 15(9)1, 15(15)1, Palo Fierro, Sonoran, and G. geosporum] were evaluated with a pure isolate of Glomus intraradices for their effect on the growth and gas exchange of Hibiscus rosa-sinensis L. cv. Leprechaun under low phosphorus fertility (11 mg P/L). Rooted cuttings of Hibiscus plants were inoculated with the seven mycorrhiza isolates and grown for 122 days. Gas exchange measurements were made on days 26, 88, and 122 after inoculation, and plants were harvested on day 123 for growth analysis. Plants inoculated with the seven isolates had 70% to 80% root colonization at harvest. Plants inoculated with G. intraradices had significantly higher leaf, shoot and root dry matter (DM), leaf DM/area (P ≤ 0.05) than those inoculated with any of the six isolates, and greater leaf area (LA) than Desert-15(9)1 and 15(15)1. Uninoculated plants had significantly lower leaf, shoot, root DM, leaf DM/area and LA (P ≤ 0.05) than the inoculated plants. There were no differences among the seven isolates in any of the gas exchange parameters measured [photosynthesis (A) stomatal conductance (gs), the ratio of intercellular to external CO2 (ci/ca), A to transpiration (E) ratio (A/E)]. The relationship between inoculated and uninoculated plants in these gas exchange parameters were variable on day 122 after inoculation.


1999 ◽  
Vol 40 (3) ◽  
pp. 57-65 ◽  
Author(s):  
Martin M. Karpiscak ◽  
Robert J. Freitas ◽  
Charles P. Gerba ◽  
Luis R. Sanchez ◽  
Eylon Shamir

An integrated wastewater treatment facility, consisting of upper (solids separators, anaerobic lagoons, and aerobic ponds) and lower (wetland cells) subsystems, has been built to replace the lagoon at a dairy in Arizona, USA. The collection sump of the new waste treatment facility collects all dairy wastewater outflow. Wastewater is then pumped to solids separators, and flows by gravity to anaerobic ponds and aerobic ponds. The upper subsystem is expected to treat the water sufficiently so that the wetland cells may achieve further pollutant reductions. The lower subsystem, comprised of 8 surface wetland cells with an approximate surface area of 5,000 m2, receives outflow from the ponds. The cells are planted with cattail (Typha domingensis), soft-stem bulrush (Scirpus validus), and reed (Phragmites australis). After treatment is completed via the lagoons and ponds followed by the wetland cells, the wastewater can be reused to flush barns or to irrigate crops. Performance of the overall system is evaluated by measuring physical, chemical and biological parameters in water samples taken from selected locations along the treatment system. Chemical parameters studied include biochemical oxygen demand, pH, total suspended solids, nitrogen species. Biological monitoring included coliforms (total and fecal) and Listeria monocytogenes.


2017 ◽  
Author(s):  
A. Leyva-Haro ◽  
◽  
R. Del Rio-Salas ◽  
V. Moreno-Rodriguez ◽  
F. Camacho-Cañez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document