Remote sensing to estimate ET-fluxes and the performance of an irrigation district in southern Italy

2006 ◽  
Vol 81 (3) ◽  
pp. 295-314 ◽  
Author(s):  
Simona Consoli ◽  
Guido D’Urso ◽  
Attilio Toscano
Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 396
Author(s):  
Junxia Yan ◽  
Yanfei Ma ◽  
Dongyun Zhang ◽  
Zechen Li ◽  
Weike Zhang ◽  
...  

Land surface evapotranspiration (ET) and gross primary productivity (GPP) are critical components in terrestrial ecosystems with water and carbon cycles. Large-scale, high-resolution, and accurately quantified ET and GPP values are important fundamental data for freshwater resource management and help in understanding terrestrial carbon and water cycles in an arid region. In this study, the revised surface energy balance system (SEBS) model and MOD17 GPP algorithm were used to estimate daily ET and GPP at 100 m resolution based on multi-source satellite remote sensing data to obtain surface biophysical parameters and meteorological forcing data as input variables for the model in the midstream oasis area of the Heihe River Basin (HRB) from 2010 to 2016. Then, we further calculated the ecosystem water-use efficiency (WUE). We validated the daily ET, GPP, and WUE from ground observations at a crop oasis station and conducted spatial intercomparisons of monthly and annual ET, GPP, and WUE at the irrigation district and cropland oasis scales. The site-level evaluation results show that ET and GPP had better performance than WUE at the daily time scale. Specifically, the deviations in the daily ET, GPP, and WUE data compared with ground observations were small, with a root mean square error (RMSE) and mean absolute percent error (MAPE) of 0.75 mm/day and 26.59%, 1.13 gC/m2 and 36.62%, and 0.50 gC/kgH2O and 39.83%, respectively. The regional annual ET, GPP, and WUE varied from 300 to 700 mm, 200 to 650 gC/m2, and 0.5 to 1.0 gC/kgH2O, respectively, over the entire irrigation oasis area. It was found that annual ET and GPP were greater than 550 mm and 500 gC/m2, and annual oasis cropland WUE had strong invariability and was maintained at approximately 0.85 gC/kgH2O. The spatial intercomparisons from 2010 to 2016 revealed that ET had similar spatial patterns to GPP due to tightly coupled carbon and water fluxes. However, the WUE spatiotemporal patterns were slightly different from both ET and GPP, particularly in the early and late growing seasons for the oasis area. Our results demonstrate that spatial full coverage and reasonably fine spatiotemporal variation and variability could significantly improve our understanding of water-saving irrigation strategies and oasis agricultural water management practices in the face of water shortage issues.


2021 ◽  
Author(s):  
Romeu G. Jorge ◽  
Isabel P. de Lima ◽  
João L.M.P. de Lima

<p>In irrigated agricultural areas, where the availability of water for irrigation does not rely on any water storage, water management requires special attention, in particular under large annual and inter-annual variability in the hydrological regime and the uncertainty of climate change. The inherent increased vulnerability of the agro-ecosystem, makes the monitoring of crop conditions and water requirements a valuable tool for improving water use efficiency and, therefore, crop yields.</p><p>This presentation focus on one such agricultural area, located in the Lis Valley (Centre of Portugal), which is a rather vulnerable area also facing drainage and salinity problems. The study aims at contributing to better characterizing the temporal and spatial distribution of rice water requirements during the growing season. Irrigation water sources are the Lis River and its tributaries, which discharges depend directly from precipitation. The most important problems of water distribution in the Lis Valley irrigation district are water shortage and poor water quality in the dry summer period, aggravated by limitations of the irrigation and drainage systems that date back to the end of the 1950’s.</p><p>We report preliminary results on using remote sensing data to better understand rice cropping local conditions, obtained within project GO Lis (PDR2020-101-030913) and project MEDWATERICE (PRIMA/0006/2018). Rice irrigation is traditionally conducted applying continuous flooding, which requires much more irrigation water than non-ponded crops, and therefore needs special attention. In particular, data obtained from satellite Sentinel-2A land surface imagery are compared with data obtained using an unmanned aerial vehicle (UAV). Data for rice cultivated areas during the 2020 cultivation season, together with weather and crop parameters, are used to calculate biophysical indicators and indices of water stress in the vegetation. Actual crop evapotranspiration was appraised with remote sensing based estimates of the crop coefficient (Kc) and used to assess rice water requirements. Procedures and methodologies to estimate Kc were tested, namely those based on vegetation indices such as the Normalized Difference Vegetation Index (NDVI). Results are discussed bearing in mind the usefulness of the diverse tools, based on different resolution data (Sentinel-2A and UAV), for improving the understanding of the impacts of irrigation practices on crop yield and main challenges of rice production and water management in the Lis Valley irrigation district.</p>


2019 ◽  
Vol 11 (15) ◽  
pp. 4145 ◽  
Author(s):  
Nicodemo Abate ◽  
Rosa Lasaponara

Sentinel-2 data have been used in various fields of human activity. In cultural heritage, their potential is still to be fully explored. This paper aims to illustrate how remote sensing and open source tools are useful for archaeological investigations. The whole issue revolves around the application of satellite (Sentinel-2) and accessory tools for the identification, knowledge and protection of the cultural heritage of two areas of southern Italy: Sant’Arsenio (SA) and Foggia (FG). Both study cases were selected for a specific reason: to demonstrate the usefulness of open data and software for research and preservation of cultural heritage, as in the case of urban sprawl, development of public works (gas- and oil-pipelines, etc.) or intensive use of land for agricultural purposes. The results obtained are relevant for the knowledge improvement and very useful to operate in the field of preventive archaeology, for the evaluation and management of risk, the planning of city-expansion or infrastructures that could damage the buried heritage.


Antiquity ◽  
2018 ◽  
Vol 92 (364) ◽  
Author(s):  
Tesse D. Stek

The Tappino Area Archaeological Project combines remote sensing, intensive survey methods and excavation to illuminate the development and working of ancient society in the Apennine Mountains, southern Italy.


2006 ◽  
Vol 10 (2) ◽  
pp. 207-212
Author(s):  
C L Savige ◽  
A N French ◽  
A W Western ◽  
J P Walker ◽  
M Abuzar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document