scholarly journals Preventive Archaeology Based on Open Remote Sensing Data and Tools: The Cases of Sant’Arsenio (SA) and Foggia (FG), Italy

2019 ◽  
Vol 11 (15) ◽  
pp. 4145 ◽  
Author(s):  
Nicodemo Abate ◽  
Rosa Lasaponara

Sentinel-2 data have been used in various fields of human activity. In cultural heritage, their potential is still to be fully explored. This paper aims to illustrate how remote sensing and open source tools are useful for archaeological investigations. The whole issue revolves around the application of satellite (Sentinel-2) and accessory tools for the identification, knowledge and protection of the cultural heritage of two areas of southern Italy: Sant’Arsenio (SA) and Foggia (FG). Both study cases were selected for a specific reason: to demonstrate the usefulness of open data and software for research and preservation of cultural heritage, as in the case of urban sprawl, development of public works (gas- and oil-pipelines, etc.) or intensive use of land for agricultural purposes. The results obtained are relevant for the knowledge improvement and very useful to operate in the field of preventive archaeology, for the evaluation and management of risk, the planning of city-expansion or infrastructures that could damage the buried heritage.

2021 ◽  
Vol 13 (12) ◽  
pp. 2313
Author(s):  
Elena Prudnikova ◽  
Igor Savin

Optical remote sensing only provides information about the very thin surface layer of soil. Rainfall splash alters soil surface properties and its spectral reflectance. We analyzed the impact of rainfall on the success of soil organic matter (SOM) content (% by mass) detection and mapping based on optical remote sensing data. The subject of the study was the arable soils of a test field located in the Tula region (Russia), their spectral reflectance, and Sentinel-2 data. Our research demonstrated that rainfall negatively affects the accuracy of SOM predictions based on Sentinel-2 data. Depending on the average precipitation per day, the R2cv of models varied from 0.67 to 0.72, RMSEcv from 0.64 to 1.1% and RPIQ from 1.4 to 2.3. The incorporation of information on the soil surface state in the model resulted in an increase in accuracy of SOM content detection based on Sentinel-2 data: the R2cv of the models increased up to 0.78 to 0.84, the RMSEcv decreased to 0.61 to 0.71%, and the RPIQ increased to 2.1 to 2.4. Further studies are necessary to identify how the SOM content and composition of the soil surface change under the influence of rainfall for other soils, and to determine the relationships between rainfall-induced SOM changes and soil surface spectral reflectance.


Author(s):  
Myagmartseren Purevtseren ◽  
Myagmarjav Indra ◽  
Byambakhuu Gantumur ◽  
Enkhtuya Nergui ◽  
Dabuxile Gungarjav

2021 ◽  
Vol 13 (21) ◽  
pp. 4483
Author(s):  
W. Gareth Rees ◽  
Jack Tomaney ◽  
Olga Tutubalina ◽  
Vasily Zharko ◽  
Sergey Bartalev

Growing stock volume (GSV) is a fundamental parameter of forests, closely related to the above-ground biomass and hence to carbon storage. Estimation of GSV at regional to global scales depends on the use of satellite remote sensing data, although accuracies are generally lower over the sparse boreal forest. This is especially true of boreal forest in Russia, for which knowledge of GSV is currently poor despite its global importance. Here we develop a new empirical method in which the primary remote sensing data source is a single summer Sentinel-2 MSI image, augmented by land-cover classification based on the same MSI image trained using MODIS-derived data. In our work the method is calibrated and validated using an extensive set of field measurements from two contrasting regions of the Russian arctic. Results show that GSV can be estimated with an RMS uncertainty of approximately 35–55%, comparable to other spaceborne estimates of low-GSV forest areas, with 70% spatial correspondence between our GSV maps and existing products derived from MODIS data. Our empirical approach requires somewhat laborious data collection when used for upscaling from field data, but could also be used to downscale global data.


Author(s):  
D. Varade ◽  
O. Dikshit

<p><strong>Abstract.</strong> Snow cover characterization and estimation of snow geophysical parameters is a significant area of research in water resource management and surface hydrological processes. With advances in spaceborne remote sensing, much progress has been achieved in the qualitative and quantitative characterization of snow geophysical parameters. However, most of the methods available in the literature are based on the microwave backscatter response of snow. These methods are mostly based on the remote sensing data available from active microwave sensors. Moreover, in alpine terrains, such as in the Himalayas, due to the geometrical distortions, the missing data is significant in the active microwave remote sensing data. In this paper, we present a methodology utilizing the multispectral observations of Sentinel-2 satellite for the estimation of surface snow wetness. The proposed approach is based on the popular triangle method which is significantly utilized for the assessment of soil moisture. In this case, we develop a triangular feature space using the near infrared (NIR) reflectance and the normalized differenced snow index (NDSI). Based on the assumption that the NIR reflectance is linearly related to the liquid water content in the snow, we derive a physical relationship for the estimation of snow wetness. The modeled estimates of snow wetness from the proposed approach were compared with in-situ measurements of surface snow wetness. A high correlation determined by the coefficient of determination of 0.94 and an error of 0.535 was observed between the proposed estimates of snow wetness and in-situ measurements.</p>


10.29007/hbs2 ◽  
2019 ◽  
Author(s):  
Juan Carlos Valdiviezo-Navarro ◽  
Adan Salazar-Garibay ◽  
Karla Juliana Rodríguez-Robayo ◽  
Lilián Juárez ◽  
María Elena Méndez-López ◽  
...  

Maya milpa is one of the most important agrifood systems in Mesoamerica, not only because its ancient origin but also due to lead an increase in landscape diversity and to be a relevant source of families food security and food sovereignty. Nowadays, satellite remote sensing data, as the multispectral images of Sentinel-2 platforms, permit us the monitor- ing of different kinds of structures such as water bodies, urban areas, and particularly agricultural fields. Through its multispectral signatures, mono-crop fields or homogeneous vegetation zones like corn fields, barley fields, or other ones, have been successfully detected by using classification techniques with multispectral images. However, Maya milpa is a complex field which is conformed by different kinds of vegetables species and fragments of natural vegetation that in conjunction cannot be considered as a mono-crop field. In this work, we show some preliminary studies on the availability of monitoring this complex system in a region of interest in Yucatan, through a support vector machine (SVM) approach.


Author(s):  
A. Chenaux ◽  
M. Murphy ◽  
S. Pavia ◽  
S. Fai ◽  
T. Molnar ◽  
...  

<p><strong>Abstract.</strong> This paper illustrates how BIM integration with GIS is approached as part of the workflow in creating Virtual Historic Dublin. A design for a WEB based interactive 3D model of historic buildings and centres in Dublin City (Virtual Historic Dublin City) paralleling smart city initiates is now under construction and led by the National Monuments at the Office of Public Works in Ireland. The aim is to facilitate the conservation and maintenance of historic infrastructure and fabric and the dissemination of knowledge for education and cultural tourism using an extensive Historic Building Information Model. Remote sensing data is now processed with greater ease to create 3D intelligent models in Historic BIM. While the use of remote sensing, HBIM and game engine platforms are the main applications used at present, 3D GIS has potential to form part of the workflow for developing the Virtual Historic City. 2D GIS is now being replaced by 3D spatial data allowing more complex analysis to be carried out, 3D GIS can define and depict buildings, urban rural centres in relation to their geometry topological, semantic and visualisation properties. The addition of semantic attributes allows complex analysis and 3D spatial queries for modelling city and urban elements. This analysis includes fabric and structural elements of buildings, relief, vegetation, transportation, water bodies, city furniture and land use.</p>


2021 ◽  
Vol 6 ◽  
pp. 24-31
Author(s):  
Dmitry A. Baikin

The article analyzes the impact of oil spills on natural objects according to the remote sensing system Sentinel-2 in Eastern Siberia. Remote sensing data analysis is used to detect traces of oil products in the accident area. Conclusions about the usage of Sentinel-2 data for detecting traces of oil products were made.


2021 ◽  
Vol 252 ◽  
pp. 112122 ◽  
Author(s):  
Jesús Aguirre-Gutiérrez ◽  
Sami Rifai ◽  
Alexander Shenkin ◽  
Imma Oliveras ◽  
Lisa Patrick Bentley ◽  
...  

2020 ◽  
Vol 12 (3) ◽  
pp. 562 ◽  
Author(s):  
Francesco Valerio ◽  
Eduardo Ferreira ◽  
Sérgio Godinho ◽  
Ricardo Pita ◽  
António Mira ◽  
...  

Accurate mapping is a main challenge for endangered small-sized terrestrial species. Freely available spatio-temporal data at high resolution from multispectral satellite offer excellent opportunities for improving predictive distribution models of such species based on fine-scale habitat features, thus making it easier to achieve comprehensive biodiversity conservation goals. However, there are still few examples showing the utility of remote-sensing-based products in mapping microhabitat suitability for small species of conservation concern. Here, we address this issue using Sentinel-2 sensor-derived habitat variables, used in combination with more commonly used explanatory variables (e.g., topography), to predict the distribution of the endangered Cabrera vole (Microtus cabrerae) in agrosilvopastorial systems. Based on vole surveys conducted in two different seasons over a ~176,000 ha landscape in Southern Portugal, we assessed the significance of each predictor in explaining Cabrera vole occurrence using the Boruta algorithm, a novel Random forest variant for dealing with high dimensionality of explanatory variables. Overall, results showed a strong contribution of Sentinel-2-derived variables for predicting microhabitat suitability of Cabrera voles. In particular, we found that photosynthetic activity (NDI45), specific spectral signal (SWIR1), and landscape heterogeneity (Rao’s Q) were good proxies of Cabrera voles’ microhabitat, mostly during temporally greener and wetter conditions. In addition to remote-sensing-based variables, the presence of road verges was also an important driver of voles’ distribution, highlighting their potential role as refuges and/or corridors. Overall, our study supports the use of remote-sensing data to predict microhabitat suitability for endangered small-sized species in marginal areas that potentially hold most of the biodiversity found in human-dominated landscapes. We believe our approach can be widely applied to other species, for which detailed habitat mapping over large spatial extents is difficult to obtain using traditional descriptors. This would certainly contribute to improving conservation planning, thereby contributing to global conservation efforts in landscapes that are managed for multiple purposes.


Drones ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 21 ◽  
Author(s):  
Francisco Rodríguez-Puerta ◽  
Rafael Alonso Ponce ◽  
Fernando Pérez-Rodríguez ◽  
Beatriz Águeda ◽  
Saray Martín-García ◽  
...  

Controlling vegetation fuels around human settlements is a crucial strategy for reducing fire severity in forests, buildings and infrastructure, as well as protecting human lives. Each country has its own regulations in this respect, but they all have in common that by reducing fuel load, we in turn reduce the intensity and severity of the fire. The use of Unmanned Aerial Vehicles (UAV)-acquired data combined with other passive and active remote sensing data has the greatest performance to planning Wildland-Urban Interface (WUI) fuelbreak through machine learning algorithms. Nine remote sensing data sources (active and passive) and four supervised classification algorithms (Random Forest, Linear and Radial Support Vector Machine and Artificial Neural Networks) were tested to classify five fuel-area types. We used very high-density Light Detection and Ranging (LiDAR) data acquired by UAV (154 returns·m−2 and ortho-mosaic of 5-cm pixel), multispectral data from the satellites Pleiades-1B and Sentinel-2, and low-density LiDAR data acquired by Airborne Laser Scanning (ALS) (0.5 returns·m−2, ortho-mosaic of 25 cm pixels). Through the Variable Selection Using Random Forest (VSURF) procedure, a pre-selection of final variables was carried out to train the model. The four algorithms were compared, and it was concluded that the differences among them in overall accuracy (OA) on training datasets were negligible. Although the highest accuracy in the training step was obtained in SVML (OA=94.46%) and in testing in ANN (OA=91.91%), Random Forest was considered to be the most reliable algorithm, since it produced more consistent predictions due to the smaller differences between training and testing performance. Using a combination of Sentinel-2 and the two LiDAR data (UAV and ALS), Random Forest obtained an OA of 90.66% in training and of 91.80% in testing datasets. The differences in accuracy between the data sources used are much greater than between algorithms. LiDAR growth metrics calculated using point clouds in different dates and multispectral information from different seasons of the year are the most important variables in the classification. Our results support the essential role of UAVs in fuelbreak planning and management and thus, in the prevention of forest fires.


Sign in / Sign up

Export Citation Format

Share Document