scholarly journals The economics of low pressure drip irrigation and hand watering for vegetable production in the Sahel

2011 ◽  
Vol 99 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Lennart Woltering ◽  
Ali Ibrahim ◽  
Dov Pasternak ◽  
Jupiter Ndjeunga
2011 ◽  
pp. 49-56 ◽  
Author(s):  
M. Palada ◽  
A.C. Mercado ◽  
M. Roberts ◽  
V.B. Ella ◽  
M.R. Reyes ◽  
...  

2021 ◽  
pp. 49-56
Author(s):  
Gulzinat Aldambergenova ◽  
◽  
Asylkhan Shomantaev ◽  
Mustafa Mustafayev ◽  
◽  
...  

The article explores the method of drip irrigation of agricultural crops, which provides a high coefficient of irrigation water (80–95%) and land (95%) use. This method helps to significantly save irrigation water by reducing losses for evaporation and filtration outside the root system zone, which eliminates surface runoff, unevenness of irrigation and creates the ability to maximize the use of irrigated areas for agricultural crops. The use of drip irrigation in vegetable production in the south of Kazakhstan since 2000 has radically changed the approach to the “water – soil – plant” complex. The authors believe that a metered feeding regimen would form a new approach to irrigation of agricultural crops, such as rice. Rice (Oryza sativa L.) as a food culture serves as one of the products consumed in food. It is grown in 120 countries on the area of more than 165 million hectares. Rice, unlike other agricultural crops, has a high biological plasticity and adaptive ability, which in modern agriculture allows it to be cultivated in a wide range of climatic conditions and irrigation methods, such as flooding, periodic irrigation and dry conditions. In world practice a continuous flooding of checks was the most widespread method of watering. This technology consumes about 50% of the total volume of irrigation water or 30% of the world’s fresh water reserves. The irrigation rate of rice cultivated with the use of this technology is in the range of 20–25 thousand m3/ha, which significantly exceeds the biological water consumption of rice agrocenosis. A significant part of the irrigation water is lost for filtration, discharges and lateral outflows. Currently, the use of drip irrigation method in rice fields is poorly studied. The research is aimed at substantiating the technology of rice cultivation using a low-pressure drip irrigation method in the conditions of Kyzylorda region


2021 ◽  
Author(s):  
Xiuchun Xu ◽  
Di Wu ◽  
Wei Zhang ◽  
Bang Ni ◽  
Xuan Yang ◽  
...  

<p>Plastic-shed vegetable production system is becoming the main type of vegetable production in China, while excessive irrigation and fertilization input lead to significant N loss by leaching, runoff, and gaseous N. The current study established a field experiment to investigate the effects of drip irrigation and optimized fertilization on vegetable yield, water and fertilizer efficiencies and N<sub>2</sub>O emission in a typical intensive plastic-shed tomato production region of China. The treatments include CK (no fertilization, flood irrigation), FFP (farmers’ conventional fertilization, flood irrigation), OPT1 (80% of FFP fertilization, flood irrigation), OPT2 (80% of FFP fertilization, drip irrigation). N<sub>2</sub>O isotopocule deltas, including δ<sup>15</sup>N<sup>bulk</sup>, δ<sup>18</sup>O and SP (the <sup>15</sup>N site preference in N<sub>2</sub>O), have been used to investigate microbial pathways of N<sub>2</sub>O production under different treatments. Our results showed: i) optimized fertilization and drip irrigation significantly improved the fertilizer and water use efficiency without reducing tomato yield, ii) compared with flood irrigation, drip irrigation decreased soil WFPS and soil ammonium content, but increased soil nitrate content. When soil moisture was higher than 60%WFPS, drip irrigation led to a decrease of N<sub>2</sub>O emission with lower N<sub>2</sub>O SP signature observed than that of food irrigation, suggesting a reduction of denitrification derived N<sub>2</sub>O. In contrast, drip irrigation significantly increased N<sub>2</sub>O emission and N<sub>2</sub>O SP value when soil moisture status was lower than 55% WFPS, which may be due to the enhanced nitrification or fungal denitrification derived N<sub>2</sub>O.</p>


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 888 ◽  
Author(s):  
Christoph Studer ◽  
Simon Spoehel

Appropriate irrigation scheduling for efficient water use is often a challenge for small-scale farmers using drip irrigation. In a trial with 12 farmers in Sébaco, Nicaragua, two tools to facilitate irrigation scheduling were tested: the Water Chart (a table indicating required irrigation doses) and tensiometers. The study aimed at evaluating if and to what extent simple tools can reduce irrigation water use and improve water productivity in drip-irrigated vegetable (beetroot; Beta vulgaris L.) production compared with the farmers’ usual practice. Irrigation water use was substantially reduced (around 20%) when farmers irrigated according to the tools. However, farmers did not fully adhere to the tool guidance, probably because they feared that their crop would not get sufficient water. Thus they still over-irrigated their crop: between 38% and 88% more water than recommended was used during the treatment period, resulting in 91% to 139% higher water use than required over the entire growing cycle. Water productivity of beetroot production was, therefore, much lower (around 3 kg/m3) than what can be achieved under comparable conditions, although yields were decent. Differences in crop yield and water productivity among treatments were not significant. The simplified Water Chart was not sufficiently understandable to farmers (and technicians), whereas tensiometers were better perceived, although they do not provide any indication on how much water to apply. We conclude that innovations such as drip irrigation or improved irrigation scheduling have to be appropriately introduced, e.g., by taking sufficient time to co-produce a common understanding about the technologies and their possible usefulness, and by ensuring adequate follow-up support.


2010 ◽  
Vol 60 (3) ◽  
pp. 318-329 ◽  
Author(s):  
S. P. Bhattarai ◽  
M. C. Palada ◽  
D. J. Midmore ◽  
D. Wu ◽  
R. Salas

2018 ◽  
Author(s):  
Steve Andrew Miller ◽  
Ajit Srivastava ◽  
Steven Marquie ◽  
Youngsuk Dong ◽  
Lyndon Kelley ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
pp. 183-192
Author(s):  
Donatus Okwudiri IGBOJIONU ◽  
Christopher Ikechi OBINECHE ◽  
Juliet Nnennaya IGBOJIONU

In South-Eastern Nigeria, during the dry season from November to April, vegetables are always in short supply and consequently expensive. Hence, there is a need to design, develop an affordable and simple bucket drip irrigation system that can be used to grow vegetables under limited water supply conditions. Using the estimated consumptive use of the proposed crop okra and the area occupied by the crop stands, the capacity of the bucket as a source of water was computed. The bucket filled with water was placed at a head of 1 m. The water was allowed to flow through emitters located at 30 cm intervals along the lateral lines laid at the land slope of 2%. Two lengths of PVC tubes 11 m long, 1 mm thick and internal diameters 16 mm, Micro-tubes 5 cm long and internal diameter 1.2 mm, were used. The discharge from each emitter was determined through volumetric measurements. The system was then evaluated using the Christiansen’s method and the Merriam and Keller’s method and assessed using ASAE standards 1996(a) and 1996(b) performance rating. 22 sampled emitters evaluated from the lateral line showed total energy drop of 2.5 x 10-5 m, flow variation (FV) of 8%, coefficient of variation (CV) of emitter discharge of 0.02, uniformity coefficient (UC) of 97% and emission uniformity (EU) of 73%. The results show that the system is efficient and can be used by farmers to meet the demands for vegetables in the dry season.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Stephen O. Onkoba ◽  
Charles N. Onyari ◽  
Bernard M. Gichimu

Use of controlled irrigation in vegetable production is considered a viable option for optimizing input use and productivity. This study aimed at assessing the effects of different drip irrigation schedules on productivity and profitability of three cabbage varieties grown in humic nitisols of Embu County. The study was laid out in a split plot design arranged in Randomized Complete Block Design (RCBD). The drip irrigation schedules were allocated the main plots and crop varieties allocated the subplot treatments. Cabbage test varieties investigated were Riana F1 (V1), Gloria F1 (V2), and Triperio F1 (V3). Irrigation schedule one (S1) involved application of irrigation water twice a week, S2 once a week, and S3 once every two weeks. Soil water content was determined before irrigation and then replenished to field capacity using a known volume of water. The data were subjected to Analysis of Variance using SAS version 9.4. Mean separation was done using Fisher’s least significant difference at 95% level of confidence. The findings revealed that the yields and net revenue obtained from different cabbage varieties were not significantly different. However, the cabbage yields and subsequent revenue increased as irrigation frequency increased. The study recommends adoption of irrigation schedule S1 whose productivity remained high despite the high cost of production.


Sign in / Sign up

Export Citation Format

Share Document