scholarly journals Response and Modeling of Hybrid Maize Seed Vigor to Water Deficit at Different Growth Stages

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3289
Author(s):  
Rongchao Shi ◽  
Ling Tong ◽  
Taisheng Du ◽  
Manoj K. Shukla

Research is imperative to predict seed vigor of hybrid maize production under water deficit in arid areas. Field experiments were conducted in 2018 and 2019 in arid areas of northwestern China to investigate the effects of different irrigation strategies at various growth stages with drip irrigation under film mulching on grain yield, kernel weight, seed protein content, and seed vigor of hybrid maize (Zea mays L.). Water deficit at vegetative, flowering, and grain-filling stages was considered and a total of 16 irrigation treatments was applied. A total of 12 indices of germination percentage, germination index (GI), shoot length (SL), and root length (RL) under different germination conditions (standard germination and accelerated aging); electrical conductivity (EC) of the leachate; and activities of peroxidase, catalase, and superoxide dismutase in seeds were measured and analyzed using the combinational evaluation method (CEM). Furthermore, five water production functions (Blank, Stewart, Rao, Jensen, and Minhas) were used to predict seed vigor evaluated by CEM under water deficit. The results showed that leachate EC was higher under water deficit than that under sufficient irrigation. The SL, RL, and GI of different germination conditions increased under water deficit at the flowering stage. The Rao model was considered the best fitted model to predict the vigor of hybrid maize seeds under water deficit, and an appropriate water deficit at the flowering stage is recommended to ensure high seed vigor of hybrid maize production with drip irrigation under film mulching. Our findings would be useful for reducing crop water use while ensuring seed vigor for hybrid maize production in arid areas.

2013 ◽  
Vol 405-408 ◽  
pp. 2273-2276
Author(s):  
Heng Jia Zhang ◽  
Jing Li

An experiment was conducted to determine the effect of mulched drip irrigation under water deficit on soil water content (SWC), stored soil water (SSW), daily water consumption (DWC) and ratio of water consumption in total water use (RWC) of potato in an arid area. Five water deficit treatments designed to subject potato to various levels of soil water deficit at different crop growth stages and a full irrigation control were established. The result indicated that the maximum SWC was at 20 cm depth in soil profile and that in 10 to 40 cm increment varied sharply during potato growing season. The SWC, SSW, DWC and RWC were significantly affected by mulched drip irrigation at water deficit regulation stages except at starch accumulation. Therefore, proper levels of soil water deficit regulated with mulched drip irrigation at proper plant growth stages could be used to regulate soil water status, stored soil water and crop water consumption effectively.


2016 ◽  
Vol 49 (1-4) ◽  
pp. 20-29
Author(s):  
OrevaOghene Aliku ◽  
Suarau Odutola Oshunsanya

Abstract Accurate quantification of irrigation water requirement at different physiological growth stages of okra (Abelmoschus esculentus L.) life cycle is important to prevent over or under irrigation. Field experiments were therefore initiated to model okra irrigation water requirements at the four physiological growth stages of okra life cycle using CROPWAT model. Derived savannah 1 (DS1), derived savannah 2 (DS2) and humid forest (HF) occupying 493.36 ha, 69.83 ha and 305.25 ha respectively were used. Some selected soil physical properties coupled with weather parameters were used to develop irrigation water requirements for okra crop. In DS1, the estimated crop co-efficient (Kc) values were 0.30, 0.52, 0.84 and 0.70 for the germination, crop growth, flowering and fruiting stages, respectively. Corresponding Kc values in DS2 were 0.30, 0.54, 0.90 and 0.84 and in the HF were 0.30, 0.56, 0.87 and 0.86 respectively. Daily crop evapo-transpiration values ranged from 1.16 to 3.36, 1.17 to 3.64, and 1.2 to 3.38 mm day-1 for DS1, DS2 and HF respectively with significant (p = 0.05) peak at the flowering stage for the three locations. Sustainable okra cultivation would require maximum daily irrigation water at flowering stage (reproductive phase) to meet the crop physiological needs and evapo-transpiration demand of the atmosphere.


2022 ◽  
Vol 262 ◽  
pp. 107407
Author(s):  
Fei Chen ◽  
Ningbo Cui ◽  
Shouzheng Jiang ◽  
Hongping Li ◽  
Yaosheng Wang ◽  
...  

1992 ◽  
Vol 118 (1) ◽  
pp. 71-75 ◽  
Author(s):  
D. Singh ◽  
M. S. Brar ◽  
A. S. Brar

SUMMARYPotassium concentrations in various plant parts of cotton (Gossypium hirsutum L.) at different growth stages were determined in field experiments in Punjab, India, in 1987, for plots fertilized at sowing and flowering, and these were compared with the final seed cotton yield. The optimum time of sampling for predicting relative yield depends on the time of K fertilizer application: if applied at sowing, plants should be sampled before the peak flowering stage (70 days after sowing, DAS); if applied at flowering (50 DAS), plants should be sampled 90–115 DAS. Critical K concentrations (% K. in dry matter) in the plant parts measured at different growth stages were 3·26 in the petioles of the third leaf from the top at flower initiation; 0·69 and 0·90 in blades and petioles of a lower leaf (first or second healthy leaf from the bottom of plant) respectively, and 2·60 in the petioles of the third leaf (young, fully mature leaf from the top of the plant) at peak flowering stage; 0·85 in blades of the third leaf, 0·53 and 0·50 in blades and petioles of a lower leaf, respectively, at the boll development stage; 0·70 and 2·85 in blades and petioles of the third leaf and 0·68 in petioles of a lower leaf at boll opening stage.


2021 ◽  
Vol 4 ◽  
Author(s):  
Pramod Prasad Dahal ◽  
Komal Bahadur Basnet ◽  
Shrawan Kumar Sah ◽  
Tika Bahadur Karki

A study was conducted on research farm of National Maize Research Program (NMRP), Rampur, Chitwan, Nepal during winter season of 2015/16 laid out in split-split plot design with three replications consisting of two FYM levels (FYM at 10 t ha-1 and no FYM application), three nitrogen levels (100, 75 and 50% N of recommended dose P and K remaining constant) and two levels of seed inoculation (Azotobacter chrococcum seed inoculation and no inoculation) with Rampur-2 maize hybrid in Nepal. One of the major factor affecting maize production is weather and this paper is prepared to assess the suitability of weather condition at different growth stages of winter season hybrid maize in condition of western Chitwan, Nepal at NMRP. The result shows that the requirement of the maize crop during different growth stages i.e. temperature, rainfall, relative humidity were fulfilled which helped to obtain remarkably higher grain yield (4.26 t ha-1) in the experiment compared to average national grain yield (2.84 t ha-1) of maize


Author(s):  
Nabin Rawal ◽  
Keshab Raj Pande ◽  
Renuka Shrestha ◽  
Shree Prasad Vista

Field experiments were conducted to evaluate yield and nutrient use efficiency in maize in response to various rates of nitrogen (N), phosphorus (P) and potassium (K) in silty clay loam soil of Khumaltar, Nepal during 2019 and 2020. Three factorial randomized complete block designs with 27 treatment combinations were used in experiments, which were repeated three times. Three factors were N levels (150, 180, 210 N kg ha-1), P levels (40, 60, 80 P2O5 kg ha-1), and K levels (40, 60, 80 K2O kg ha-1). The results recommend to revise fertilizer dose since N210 kg ha-1 and K2O 80 kg/ha were optimum for increased maize production with grain yields of 10.95 t ha-1 and 10.54 t ha-1, respectively. Partial factor productivity, partial nutrient budget, internal efficiency, physiological efficiency, recovery efficiency, and agronomic efficiency of NPK for hybrid maize were mostly influenced by nutrient levels. Application of higher rate of P and K fertilizer improved maize N efficiencies, and case was valid for P and K efficiencies. Maize was more responsive to N and K fertilizer and lower rate of P application limited efficient use of applied N and K. To increase overall NUE, we recommend to revise dose of fertilizer for hybrid maize under mid hill condition of Nepal.


Weed Science ◽  
1987 ◽  
Vol 35 (6) ◽  
pp. 853-857 ◽  
Author(s):  
Wendel B. Orr ◽  
Chaudhry A. Ozair ◽  
Loren J. Moshier

Efficacy of soil and/or foliage applications of the sodium salt of chloramben (3-amino-2,5-dichlorobenzoic acid) was compared, and the influence of growth stage and oil base within adjuvants on chloramben efficacy was evaluated on velvetleaf (Abutilon theophrastiMedic. # ABUTH). In greenhouse experiments, soil applications reduced growth of velvetleaf treated at the six- to seven-leaf stage (15-cm height) more than did foliage applications. Simulated rainfall applied 48 h after chloramben was applied to foliage significantly increased chloramben activity. Chloramben plus an oil concentrate applied at 3.4 kg ae/ha plus 2.3 L/ha reduced fresh and dry weight less as growth stage advanced in both greenhouse and field experiments. Origin of oil present in the oil concentrate did not influence the activity of chloramben plus oil concentrate in either the greenhouse or in the field. Chloramben plus oil concentrate reduced seed capsule (boll) production 70% or more in velvetleaf plants treated at each of three growth stages in one year and reduced capsule production 90, 90, and 28% in plants treated at early vegetative, late vegetative, and flowering stages, respectively, in the second year. Viability of seed was less from plants treated at a vegetative stage compared to the flowering stage.


2013 ◽  
Vol 405-408 ◽  
pp. 2130-2133 ◽  
Author(s):  
Heng Jia Zhang ◽  
Jing Li

An experiment was carried out to determine the effect of mulched drip irrigation under water deficit on leaf area index (LAI), leaf area duration (LAD), dry matter (DM) and relative growth rate (RGR) of potato in an arid environment. Five water deficit treatments and a full irrigation control were established to subject potato to various levels of soil water deficit at different crop growth stages. The result indicated that potato LAI and LAD at all the determined growth stages were not reduced under water deficit regulation. Additionally, the DM and RGR at starch accumulation were not significantly decreased under water deficit either. Therefore, medium soil water deficit regulated at 55%~65% of field capacity with mulched drip irrigation at potato tuber initiation could be used to effectively improve leaf area index, leaf area duration, dry matter and relative growth rate of plants.


2018 ◽  
Vol 22 (5) ◽  
pp. 3075-3086 ◽  
Author(s):  
Guanghui Ming ◽  
Hongchang Hu ◽  
Fuqiang Tian ◽  
Zhenyang Peng ◽  
Pengju Yang ◽  
...  

Abstract. Plastic film mulching (PFM) has widely been used around the world to save water and improve crop yield. However, the effect of PFM on soil respiration (Rs) remains unclear and could be further confounded by irrigation and precipitation. To address these topics, controlled experiments were conducted in mulched and non-mulched fields under drip irrigation from 2014 to 2016 in an arid area of the Xinjiang Uygur Autonomous Region, northwest China. The spatio-temporal pattern of soil surface CO2 flux as an index of soil respiration under drip irrigation with PFM was investigated, and the confounded effects of PFM and irrigation/precipitation on soil respiration were explored. The main findings were as follows. (1) Furrows, planting holes, and plastic mulch are three important pathways of soil CO2 emissions in mulched fields, of which the planting hole efflux outweighs that from the furrow, with the largest values of 8.0 and 6.6 µmol m−2 s−1, respectively, and the plastic mulch itself can emit up to 3.6 µmol m−2 s−1 of CO2. (2) The frequent application of water (i.e. through irrigation and precipitation) elevates soil moisture and soil respiration and enhances their variation. The resultant higher variation of soil moisture further alleviates the sensitivity of soil respiration to soil temperature, leading to a weak correlation and lower Q10 values. (3) Soil CO2 effluxes from furrows and ridges in mulched fields outweigh the corresponding values in non-mulched fields in arid areas. However, this outweighing relation attenuates with increasing precipitation. Furthermore, by combining our results with those from the literature, we show that the difference in soil CO2 effluxes between non-mulched and mulched fields presents a linear relation with the amount of precipitation, which results in negative values in arid areas and positive values in humid areas. Therefore, whether PFM increases soil respiration or not depends on the amount of precipitation during the crop-growing season.


2013 ◽  
Vol 838-841 ◽  
pp. 2366-2369 ◽  
Author(s):  
Ai Cun Wen ◽  
Heng Jia Zhang

An experiment was carried out to determine the effect of water deficit regulated with mulched drip irrigation on plant growth of processing tomato in an arid environment. The results indicated that Water deficit had little effect on plant height of processing tomato at full fruiting and late fruiting except that at seedling and flowering. Still, no effect of water deficit regulation on stem diameter was found at all measured growth stages. However, leaf area index and dry matter was significantly (p<0.05) reduced at all growth stages of tomato subjected to high water deficit at seedling. Therefore, low level of water deficit at seedling while free of deficit from flowering to late fruiting as well as proper levels of water deficit at flowering or full fruiting or late fruiting while free of deficit at seedling could be used to effectively regulate leaf growth and dry matter accumulation of processing tomato in arid areas.


Sign in / Sign up

Export Citation Format

Share Document