Did water-saving irrigation protect water resources over the past 40 years? A global analysis based on water accounting framework

2021 ◽  
Vol 249 ◽  
pp. 106793
Author(s):  
Xinyao Zhou ◽  
Yongqiang Zhang ◽  
Zhuping Sheng ◽  
Kiril Manevski ◽  
Mathias N. Andersen ◽  
...  
1995 ◽  
Vol 32 (9-10) ◽  
pp. 267-272 ◽  
Author(s):  
A. Angelakis ◽  
E. Diamadopoulos

The basic aim of this paper is to present the existing conditions and problems of water resources management in Greece. Water demand has increased tremendously over the past 30 years. Despite adequate precipitation, water imbalance is often experienced, due to temporal and regional variations of the precipitation, the increased water demand during the summer months and the difficulty of transporting water due to the mountainous terrain. Integration of reclaimed wastewater originating from the wastewater treatment plant effluents into the water resources management is proposed. This plan exhibits the potential for reducing the pollution loads entering sea or inland waters, while at the same time providing water for irrigation.


Water Policy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 768-788
Author(s):  
Nitin Bassi ◽  
Guido Schmidt ◽  
Lucia De Stefano

Abstract The main objective of this research paper is to assess the extent to which the concept of water accounting has been applied for water management at the river basin scale in India. For this, the study first assesses the importance given to the use of water accounting for water management in India's national water policy. It then analyses the evolution of water accounting approaches in India through a systematic review of the past research studies on the theme. Further, it looks at their contribution to decision-making concerning allocation of water resources and resolving conflicts over water sharing. Finally, it identifies the existing gaps in the methodologies for water accounting so far used in India.


2016 ◽  
Vol 74 (5) ◽  
pp. 1106-1115 ◽  
Author(s):  
L. Mu ◽  
L. Fang ◽  
H. Wang ◽  
L. Chen ◽  
Y. Yang ◽  
...  

Worldwide, water scarcity threatens delivery of water to urban centers. Increasing water use efficiency (WUE) is often recommended to reduce water demand, especially in water-scarce areas. In this paper, agricultural water use efficiency (AWUE) is examined using the super-efficient data envelopment analysis (DEA) approach in Xi'an in Northwest China at a temporal and spatial level. The grey systems analysis technique was then adopted to identify the factors that influenced the efficiency differentials under the shortage of water resources. From the perspective of temporal scales, the AWUE increased year by year during 2004–2012, and the highest (2.05) was obtained in 2009. Additionally, the AWUE was the best in the urban area at the spatial scale. Moreover, the key influencing factors of the AWUE are the financial situations and agricultural water-saving technology. Finally, we identified several knowledge gaps and proposed water-saving strategies for increasing AWUE and reducing its water demand by: (1) improving irrigation practices (timing and amounts) based on compatible water-saving techniques; (2) maximizing regional WUE by managing water resources and allocation at regional scales as well as enhancing coordination among Chinese water governance institutes.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 577 ◽  
Author(s):  
Lizhen Wang ◽  
Yong Zhao ◽  
Yuefei Huang ◽  
Jianhua Wang ◽  
Haihong Li ◽  
...  

Water-rights trade has proved to be an effective method for coping with water shortages through the transfer of water resources between users. The water allocation system is classified into two categories based on information transparency and water rights transaction goals: administered system (AS) and market-based system (MS). A multi-agent and multi-objective optimal allocation model, built on a complex adaptive system, was introduced to direct the distribution of water resources under an AS in the Shiyang River Basin; it was compared with a market-based water rights transaction model using the bulletin-board approach. Ideal economic agent equations played a dominant role in both models. The government and different water users were conceptualized as agents with different behaviors and goals in water allocation. The impact of water-saving cost on optimal water allocation was also considered. The results showed that an agent’s water-saving behavior was incentivized by high transaction prices in the water market. Under the MS, the highest bid in the quotation set had a dominant influence on how trade was conducted. A higher transaction price will, thus, result in a better benefit ratio, and a lower one will result in inactivity in terms of water rights trade. This will significantly impact the economic benefit to the basin.


2005 ◽  
Vol 32 (1) ◽  
pp. 159-163 ◽  
Author(s):  
Duan Wei

Beijing is located in a semiarid region, and water shortage is a common problem in the city. Along with the rapid increase in water demand, due to fast socioeconomic development and an increase in population, a shortage of water resources and a deterioration of the water environment have become obstacles to sustainable socioeconomic development in Beijing. In the long run, sustainable water resources management, water conservation, and completion of the south to north water diversion project will solve the problem. This paper introduces the water resources situation in Beijing; analyzes future water demand; and discusses the actions of water saving, nontraditional water resources exploitation, wetland construction, and water environment protection. The paper also explains the importance of the south to north water diversion project and the general layout of the water supply strategy, water distribution system, and methods to efficiently use the diverted water in Beijing.Key words: water resources, water supply, water saving, water recycling, water diversion.


2006 ◽  
Vol 10 (3) ◽  
pp. 455-468 ◽  
Author(s):  
A. K. Chapagain ◽  
A. Y. Hoekstra ◽  
H. H. G. Savenije

Abstract. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28 per cent of the international virtual water flows related to the trade of agricultural products and 6 per cent of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.


2021 ◽  
Author(s):  
Xinjian Guan ◽  
Qiongying Du ◽  
Wenge Zhang ◽  
Baoyong Wang

Abstract Establishing and perfecting the water rights system is an important way to alleviate the shortage of water resources and realize the optimal allocation of water resources. Agriculture is an important user of water in various water-consumption industries, the confirmation of water rights in irrigation districts to farmers is the inevitable requirement for implementing fine irrigation in agricultural production. In this paper, a double-level water rights allocation model of national canals – farmer households in irrigation district is established. It takes into account the current water consumption of the canal system, the future water-saving potential and the constraint of total amount control at the canal level. It takes into account the asymmetric information of farmer households’ population and irrigation area at the farmer household level. Furthermore, the Gini coefficient method is used to construct the water rights allocation model among farmer households based on the principle of fairness. Finally, Wulanbuhe Irrigation Area in the Hetao Irrigation Area of Inner Mongolia is taken as an example. The results show that the allocated water rights of the national canals in the irrigation district are less than the current because of water-saving measures and water rights of farmer household get compensation or cut respectively. The research has fully tapped the water-saving potential of irrigation districts, refined the distribution of water rights of farmers and can provide a scientific basis for the development of water rights allocation in irrigation districts and water rights transactions between farmers.


2017 ◽  
Vol 8 (4) ◽  
pp. 189-197
Author(s):  
Christiane Cavalcante Leite ◽  
Marcos Heil Costa ◽  
Ranieri Carlos Ferreira de Amorim

The evaluation of the impacts of land-use change on the water resources has been, many times, limited by the knowledge of past land use conditions. Most publications on this field present only a vague description of the past land use, which is usually insufficient for more comprehensive studies. This study presents the first reconstruction of the historical land use patterns in Amazonia, that includes both croplands and pasturelands, for the period 1940-1995. During this period, Amazonia experienced the fastest rates of land use change in the world, growing 4-fold from 193,269 km2 in 1940 to 724,899 km2 in 1995. This reconstruction is based on a merging of satellite imagery and census data, and provides a 5'x5' yearly dataset of land use in three different categories (cropland, natural pastureland and planted pastureland) for Amazonia. This dataset will be an important step towards understanding the impacts of changes in land use on the water resources in Amazonia.


Sign in / Sign up

Export Citation Format

Share Document