Effect of sulfur fertilizer on summer maize grain yield and soil water utilization under different irrigation patterns from anthesis to maturity

2021 ◽  
Vol 250 ◽  
pp. 106828
Author(s):  
Yuzhao Ma ◽  
Hui Zhang ◽  
Yangfang Xue ◽  
Yingbo Gao ◽  
Xin Qian ◽  
...  
Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 174 ◽  
Author(s):  
Alfonso de Lara ◽  
Louis Longchamps ◽  
Raj Khosla

Improvement in water use efficiency of crops is a key component in addressing the increasing global water demand. The time and depth of the soil water monitoring are essential when defining the amount of water to be applied to irrigated crops. Precision irrigation (PI) is a relatively new concept in agriculture, and it provides a vast potential for enhancing water use efficiency, while maintaining or increasing grain yield. Neutron probes (NPs) have consistently been used as a robust and accurate method to estimate soil water content (SWC). Remote sensing derived vegetation indices have been successfully used to estimate variability of Leaf Area Index and biomass, which are related to root water uptake. Crop yield has not been evaluated on a basis of SWC, as explained by NPs in time and at different depths. The objectives of this study were (1) to determine the optimal time and depth of SWC and its relationship to maize grain yield (2) to determine if satellite-derived vegetation indices coupled with SWC could further improve the relationship between maize grain yield and SWC. Soil water and remote sensing data were collected throughout the crop season and analyzed. The results from the automated model selection of SWC readings, used to assess maize yield, consistently selected three dates spread around reproductive growth stages for most depths (p value < 0.05). SWC readings at the 90 cm depth had the highest correlation with maize yield, followed closely by the 120 cm. When coupled with remote sensing data, models improved by adding vegetation indices representing the crop health status at V9, right before tasseling. Thus, SWC monitoring at reproductive stages combined with vegetation indices could be a tool for improving maize irrigation management.


2019 ◽  
Vol 19 (5) ◽  
pp. 2200-2211 ◽  
Author(s):  
Qinglong Yang ◽  
Peng Liu ◽  
Shuting Dong ◽  
Jiwang Zhang ◽  
Bin Zhao

2006 ◽  
Vol 54 (4) ◽  
pp. 425-430
Author(s):  
T. Árendás ◽  
L. C. Marton ◽  
P. Bónis ◽  
Z. Berzsenyi

The effect of varying weather conditions on the moisture content of the maize grain yield was investigated in Martonvásár, Hungary from late August to late September, and from the 3rd third of September to the 1st third of Novemberbetween 1999 and 2002. In every year a close positive correlation (P=0.1%) could be observed between the moisture content in late September and the rate of drying down in October. Linear regression was used each year to determine the equilibrium moisture content, to which the moisture content of kernels returned if they contained less than this quantity of water in late September and harvesting was delayed. In the experimental years this value ranged from 15.24-19.01%.


2018 ◽  
Vol 44 (2) ◽  
pp. 268
Author(s):  
Jun-Hong XIE ◽  
Ling-Ling LI ◽  
Ren-Zhi ZHANG ◽  
Qiang CHAI

2011 ◽  
Vol 37 (1) ◽  
pp. 152-157 ◽  
Author(s):  
You-Liang YE ◽  
Yu-Fang HUANG ◽  
Chun-Sheng LIU ◽  
Ri-Tao QU ◽  
Hai-Yan SONG ◽  
...  

Crop Science ◽  
1992 ◽  
Vol 32 (3) ◽  
pp. 718-722 ◽  
Author(s):  
E. Martínez‐Barajas ◽  
C. Villanueva‐Verduzco ◽  
J. Molina‐Galán ◽  
H. Loza‐Tavera ◽  
E. Sánchez‐de‐Jiménez

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1459
Author(s):  
Heba S. A. Salama ◽  
Ali I. Nawar ◽  
Hassan E. Khalil ◽  
Ahmed M. Shaalan

The sequence of the preceding crops in a no-tillage farming system, could interact with the integrated use of mineral and organic nitrogen (N) sources in a way that improves the growth and productivity of the terminal maize crop, meanwhile, enhancing its N use efficiency (NUE). In the current study, six legume-cereal crop sequences, including faba bean, soybean, Egyptian clover, wheat, and maize were evaluated along two experimental rotations that ended up by planting the terminal maize crop. In addition, the effects of applying variable mineral nitrogen (MN) rates with and without the incorporation of farmyard manure (FYM) on the productive performance of maize and its NUE were tested. The field experiments were conducted in a no-tillage irrigated farming system in Northern Egypt, a location that is characterized by its arid, Mediterranean climate. Results revealed that increasing the legume component in the evaluated crop sequences, up to 75%, resulted in improved maize ear leaf area, 1000-grain weight, and harvest index, thus, a higher final grain yield, with the inclusion of Egyptian clover was slightly better than faba bean. Comparing the crop sequences with 50% legume contribution uncovered the positive effects of soybean preceding crop on the terminal maize crop. Substituting 25% of the applied MN with FYM resulted in similar maize yields to the application of the equivalent 100% MN rates. The fertilizer treatments significantly interacted with the crop sequences in determining the maize grain yield, where the highest legume crop contribution in the crop sequence (75%) equalized the effects of the different fertilizer treatments on maize grain yield. The integrated use of FYM with MN in maize fertilization improved the NUE compared to the application of MN alone. Comparing fertilization treatments with similar MN content, with and without FYM, revealed that the difference in NUE was attributed to the additional amount of FYM. In similar conditions to the current study, it is recommended to grow faba bean two years before maize, while Egyptian clover could be grown directly preceding maize growth, with frequent inclusion of soybean in the sequence, this could be combined with the application of an average of 200 kg MN ha−1 in addition to FYM.


Crop Science ◽  
1988 ◽  
Vol 28 (6) ◽  
pp. 961-964 ◽  
Author(s):  
D. W. Salvador ◽  
R. Brent. Pearce

Sign in / Sign up

Export Citation Format

Share Document