The influence mechanism of the main suspended particles of Yellow River sand on the emitter clogging − An attempt to improve the irrigation water utilization efficiency in Yellow River basin

2021 ◽  
Vol 258 ◽  
pp. 107202
Author(s):  
Wenqian Zhang ◽  
Chang Lv ◽  
Xue Zhao ◽  
Aihong Dong ◽  
Wenquan Niu
2020 ◽  
Vol 12 (7) ◽  
pp. 2869
Author(s):  
Xiling Zhang ◽  
Yusheng Kong ◽  
Xuhui Ding

To promote the high-quality development of the Yellow River Basin, the total amount and intensity of agricultural water must be controlled. Further speaking, an urbanization development system should be established that is compatible with water resources and the water environment. We adopted the stochastic frontier analysis model to measure the agricultural water utilization efficiency of the Yellow River Basin from 2007 to 2017. We also adopted the dynamic panel difference generalized method of moments (GMM) and system GMM models to verify the driving factors, in which population urbanization, economic urbanization, and equilibrium urbanization levels were selected as the key variables. The results show that the overall efficiency of agricultural water utilization maintained a steady upward trend during the research period. The spatial differentiation was generally characterized by higher efficiency levels in the eastern region and lower levels in the western region. The variation coefficient of water utilization efficiency showed a downward trend in general, which indicates a space spillover effect. Agricultural water utilization efficiency continued to converge from 2007 to 2017, and the upper reaches area converged relatively more quickly. Regarding the influencing factors, the population urbanization, economic urbanization, balanced urbanization, crop planting ratio, and rice planting ratio had negative effects on agricultural water utilization efficiency. Urbanization did not positively affect agricultural water use efficiency as the related theories, so urbanization quality and urban–rural integration should be paid more attention. However, technology innovation was significantly positive in agricultural water utilization efficiency. The influencing factors of per capita water availability and annual precipitation did not pass the significance test. Therefore, the government should vigorously promote the development of high-quality new-type urbanization, scientifically formulate the scale and speed of urbanization, strengthen the urban, rural, and industrial integration, and promote the adjustment of planting structures and agricultural deep processing.


Land ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 475 ◽  
Author(s):  
Xiao Lu ◽  
Yi Qu ◽  
Piling Sun ◽  
Wei Yu ◽  
Wenlong Peng

Exploring the green transition of cultivated land use from the perspective of green utilization efficiency evaluation has become an important content of deepening the study of cultivated land use transition, which is of great significance to promote food security and ecological civilization construction. At present, there are few studies on the green utilization efficiency of cultivated land (GUECL), which covers the comprehensive benefits of economy, ecology and society, combined with the requirements of ecological civilization and green development. Taking 65 cities (regions and autonomous prefectures) of the Yellow River Basin as the basic evaluation unit, the GUECL of the Yellow River Basin is evaluated with a Super-SBM model. In general, the GUECL of the Yellow River Basin was not high at four time points of 2000, 2006, 2012 and 2018, which presents a trend of “rising first and then falling”. Analyzing its temporal and spatial evolution pattern, the GUECL in the upper, middle and lower reaches presented an order of the upper reaches area > the lower reaches area > the middle reaches area; and the spatial variation trend showed a decrease from west to east, and a U-shaped change in the south-north direction. Using spatial correlation analysis, except for the year 2000, the GUECL in the Yellow River Basin presents a general distribution characteristic of spatial agglomeration, which is positively correlated in 2006, 2012 and 2018. The change of spatio-temporal pattern is the result of internal and external factors. The former mainly displays in the main characteristics of farmers, family characteristics and farmers’ cognition, while the latter is reflected in natural, social and policy factors.


Author(s):  
Yu Wang ◽  
Weihao Wang ◽  
Shaoming Peng ◽  
Guiqin Jiang ◽  
Jian Wu

Abstract. In order to organize water for drought resistance reasonably, we need to study the relationship between irrigation water demand and meteorological drought in quantitative way. We chose five typical irrigation districts including the Qingtongxia irrigation district, Yellow River irrigation districts of Inner Mongolia in the upper reaches of the Yellow River, the Fen river irrigation district and the Wei river irrigation district in the middle reaches of the Yellow River and the irrigation districts in the lower reaches of the Yellow River as research area. Based on the hydrology, meteorology, groundwater and crop parameters materials from 1956 to 2010 in the Yellow River basin, we selected reconnaissance drought index (RDI) to analyze occurrence and evolution regularity of drought in the five typical irrigation districts, and calculated the corresponding irrigation water demand by using crop water balance equation. The relationship of drought and irrigation water demand in each typical irrigation district was studied by using grey correlation analysis and relevant analysis method, and the quantitative relationship between irrigation water demand and RDI was established in each typical irrigation district. The results showed that the RDI can be applied to evaluate the meteorological drought in the typical irrigation districts of the Yellow River basin. There is significant correlation between the irrigation water demand and RDI, and the grey correlation degree and correlation coefficient increased with increasing crops available effective rainfall. The irrigation water demand of irrigation districts in the upstream, middle and downstream of the Yellow River basin presented different response degrees to drought. The irrigation water demand increased 105 million m3 with the drought increasing one grade (RDI decreasing 0.5) in the Qingtongxia irrigation district and Yellow River irrigation districts of Inner Mongolia. The irrigation water demand increased 219 million m3 with the drought increasing one grade in the Fen river irrigation district and Wei river irrigation district. The irrigation water demand increased 622 million m3 with the drought increasing one grade in the downstream of Yellow River irrigation districts.


2016 ◽  
Vol 16 (6) ◽  
pp. 1561-1570 ◽  
Author(s):  
Xin-jian Guan ◽  
Sheng-xing Liang ◽  
Yu Meng

This study investigated appropriate indicators using the trapezoidal fuzzy number method, and constructed an evaluation index system for water resources comprehensive utilization efficiency (WRCUE). A WRCUE evaluation model is applied to areas in the Yellow River Basin in China using a genetic projection pursuit method. Results show that WRCUE is well developed in Shanxi, Shandong, and Henan provinces, moderately developed in Shanxi, Inner Mongolia, and Sichuan provinces, and poorly developed in the Ningxia Autonomous Region, Gansu Province, and Qinghai Province. According to the capacities of provinces, related measures are proposed.


Sign in / Sign up

Export Citation Format

Share Document