Peri-implant bone response to orthodontic loading: Part 2. Implant surface geometry and its effect on regional bone remodeling

2005 ◽  
Vol 128 (2) ◽  
pp. 182-189 ◽  
Author(s):  
Rodrigo Oyonarte ◽  
Robert M. Pilliar ◽  
Douglas Deporter ◽  
Donald G. Woodside
2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Karl Niklas Hansson ◽  
Stig Hansson

The surface roughness affects the bone response to dental implants. A primary aim of the roughness is to increase the bone-implant interface shear strength. Surface roughness is generally characterized by means of surface roughness parameters. It was demonstrated that the normally used parameters cannot discriminate between surfaces expected to give a high interface shear strength from surfaces expected to give a low interface shear strength. It was further demonstrated that the skewness parameter can do this discrimination. A problem with this parameter is that it is sensitive to isolated peaks and valleys. Another roughness parameter which on theoretical grounds can be supposed to give valuable information on the quality of a rough surface is kurtosis. This parameter is also sensitive to isolated peaks and valleys. An implant surface was assumed to have a fairly well-defined and homogenous “semiperiodic” surface roughness upon which isolated peaks were superimposed. In a computerized simulation, it was demonstrated that by using small sampling lengths during measurement, it should be possible to get accurate values of the skewness and kurtosis parameters.


2015 ◽  
Vol 41 (4) ◽  
pp. 437-443 ◽  
Author(s):  
Marco Mozzati ◽  
Giorgia Gallesio ◽  
Massimo Del Fabbro

The aim of this paper is to retrospectively assess the long-term clinical and radiological results in a group of patients treated with Brånemark TiUnite implants supporting mostly single-tooth and partial restorations. The clinical records of 90 consecutive patients (mean age 55.9 years; range 21–82 years), treated with 209 Brånemark System MkIII or MkIV TiUnite implants (72 maxillary/137 mandibular; 26 anterior intercanine/183 posterior sites), were analyzed. Indication types were single tooth (n = 21 implants), partial (n = 180) and full arches (n = 8). A delayed loading protocol was applied in 128 implants, while 81 were immediately loaded. Cumulative survival rate and marginal bone remodeling were evaluated. Marginal bone level was evaluated by an independent radiologist from periapical radiographs taken at implant insertion and at long-term follow up. Plaque, probing pocket depth and peri-implant mucosa conditions were also assessed. The results showed the mean follow-up duration was 11.0 years (range 9.6–12.4 years): 181 implants (90.5%) reached at least 10 years follow-up, 100 implants 11 years, and 17 implants 12 years. Overall, 6 implants failed in 4 patients (5 during the first year and 1 after 2 years) resulting in a 97.1% survival rate after 12 years. Mean bone levels at implant insertion and at the last follow up were −0.90 ± 1.16 mm (mean ± SD; n = 169) and −1.49 ± 0.95 mm (n = 195), respectively. Mean marginal bone remodeling from implant insertion to the last follow-up was −0.60 ± 1.17 mm (n = 168). At the last available follow-up, mean pocket depth was 1.65 ± 0.84 mm. Peri-implant mucosa was normal for the majority (97%) of implants. In conclusion, this retrospective long-term study showed excellent survival rate of TiUnite implants as well as favorable marginal bone response and soft tissue conditions.


2007 ◽  
Vol 361-363 ◽  
pp. 749-752
Author(s):  
J. Strnad ◽  
Jan Macháček ◽  
Z. Strnad ◽  
C. Povýšil ◽  
Marie Strnadová

This study was carried out to assess the bone response to alkali-modified titanium implant surface (Bio surface), using histomorphometric investigation on an animal model. The mean net contribution of the Bio surface to the increase in bone implant contact (BIC) with reference to the turned, machined surface was evaluated at 7.94 % (BIC/week), within the first five weeks of healing. The contribution was expressed as the difference in the osseointegration rates ( BIC/'healing time) between the implants with alkali modified surface (Bio surface) and those with turned, machined surface. The surface characteristics that differed between the implant surfaces, i.e. surface morphology, specific surface area, contact angle, hydroxylation/hydration, may represent factors that influence the rate of osseointegration.


2019 ◽  
Vol 97 (8) ◽  
pp. 3369-3378
Author(s):  
Chelsie J Huseman ◽  
Dennis H Sigler ◽  
Thomas H Welsh ◽  
Larry J Suva ◽  
Martha M Vogelsang ◽  
...  

AbstractThe quality and strength of the skeleton is regulated by mechanical loading and adequate mineral intake of calcium (Ca) and phosphorus (P). Whole body vibration (WBV) has been shown to elicit adaptive responses in the skeleton, such as increased bone mass and strength. This experiment was designed to determine the effects of WBV and dietary Ca and P on bone microarchitecture and turnover. A total of 26 growing pigs were utilized in a 60-d experiment. Pigs were randomly assigned within group to a 2 × 2 factorial design with dietary Ca and P concentration (low and adequate) as well as WBV. The adequate diet was formulated to meet all nutritional needs according to the NRC recommendations for growing pigs. Low Ca, P diets had 0.16% lower Ca and 0.13% lower P than the adequate diet. Pigs receiving WBV were vibrated 30 min/d, 3 d/wk at a magnitude of 1 to 2 mm and a frequency of 50 Hz. On days 0, 30, and 60, digital radiographs were taken to determine bone mineral content by radiographic bone aluminum equivalency (RBAE) and serum was collected to measure biochemical markers of bone formation (osteocalcin, OC) and bone resorption (carboxy-terminal collagen crosslinks, CTX-I). At day 60, pigs were euthanized and the left third metacarpal bone was excised for detailed analysis by microcomputed tomography (microCT) to measure trabecular microarchitecture and cortical bone geometry. Maximum RBAE values for the medial or lateral cortices were not affected (P > 0.05) by WBV. Pigs fed adequate Ca and P tended (P = 0.10) to have increased RBAE max values for the medial and lateral cortices. WBV pigs had significantly decreased serum CTX-1 concentrations (P = 0.044), whereas animals fed a low Ca and P diet had increased (P < 0.05) OC concentrations. In bone, WBV pigs showed a significantly lower trabecular number (P = 0.002) and increased trabecular separation (P = 0.003), whereas cortical bone parameters were not significantly altered by WBV or diet (P > 0.05). In summary, this study confirmed the normal physiological responses of the skeleton to a low Ca, P diet. Interestingly, although the WBV protocol utilized in this study did not elicit any significant osteogenic response, decreases in CTX-1 in response to WBV may have been an early local adaptive bone response. We interpret these data to suggest that the frequency and amplitude of WBV was likely sufficient to elicit a bone remodeling response, but the duration of the study may not have captured the full extent of an entire bone remodeling cycle.


2015 ◽  
Vol 41 (4) ◽  
pp. 414-418 ◽  
Author(s):  
Carlo Mangano ◽  
Adriano Piattelli ◽  
Carmen Mortellaro ◽  
Francesco Mangano ◽  
Vittoria Perrotti ◽  
...  

Analysis of human retrieved dental implants is a useful tool in the evaluation of implant success and failure. More human histological data are needed from samples of long-term implant service. The aim of the present case series was a histological and histomorphometrical evaluation of the peri-implant bone responses in implants retrieved for fracture after more than 20 years loading. The archives of the Implant Retrieval Center of the Department of Medical, Oral and Biotechnological Sciences of the University of Chieti-Pescara, Italy were searched. A total of 5 implants, retrieved after a loading period of more than 20 years, were found: 2 had been retrieved after 20 years, 1 after 22 years, 1 after 25 years, and 1 after 27 years. All these implants were histologically processed. Compact, mature bone in close contact with the implant surface was observed in all specimens, with no gaps or connective tissue at the interface. Bone in different maturation stages was found around some implants. Primarily newly formed bone was observed in proximity of the implant surface, while mature compact bone with many remodeling areas and cement lines were detected in areas distant from the implant. Many primary and secondary osteons were present. Bone to implant contact percentage varied from 37.2% to 76%. In conclusion, histology and histomorphometry showed that even after many years of function, all implants presented more than adequate bone to implant contact and they appeared to be very well integrated in the peri-implant bone.


1998 ◽  
Vol 13 (8) ◽  
pp. 928-934 ◽  
Author(s):  
Darryl D. D'Lima ◽  
Stefan M. Lemperle ◽  
Peter C. Chen ◽  
Ralph E. Holmes ◽  
Clifford W. Colwell

2020 ◽  
Author(s):  
Jiyeon Kim ◽  
Heon-Young Kim ◽  
Won-Ho Kim ◽  
Jin-Woo Kim ◽  
Minji Kim

Abstract BackgroundOsseointegrated implants are considered as clinically non-movable. Parathyroid hormone (PTH) is known to play a significant role in the regulation of bone remodeling and in intermittent, low doses, result in osteoanabolic effects. This study aimed to investigate the effects of PTH and corticotomy, both under traction force, on osseointegrated implants.MethodsFour implants—two in each hemimandible—were placed in each of the three study mongrels. Each mongrels were designated as control, normal dose PTH (PTH-1), and high dose PTH (PTH-2) groups, with each groups further subdivided into non-surgery implant and surgery implant. After osseointegration, mechanical force with NiTi closed coil springs (500g) was applied around each implants. Corticotomy was performed around one of four implants in each mongrels. Parathyroid hormone was administered locally on a weekly basis for 20 weeks. Clinical movement of the implants were evaluated with the superimposed 3D- scanned data, bone- microarchitectural and histologic examinations.ResultsSuperimposition analysis showed continuous movement of the non-surgery implant of PTH-1 group. Movement was further justified with lowest bone implant contact (adjusted BIC; 44.77%) in histomorphometric analysis. Upregulation of bone remodeling around the implant was observed in the normal dose PTH group. In the surgery implants, the remarkably higher adjusted BIC compared to the non-surgery implants indicated increased bone formation around the implant surface. ConclusionThe results indicate that the catabolic and anabolic balance of osseointegrated implants in terms of bone remodeling can be shifted via various interventions including pharmacological, surgical and mechanical force.Clinical RelevanceUpregulated bone remodeling by PTH and corticotomy under continuous mechanical force showed the possible implications for the movement of osseointegrated dental implant.


2006 ◽  
Vol 85 (6) ◽  
pp. 496-500 ◽  
Author(s):  
M.M. Shalabi ◽  
A. Gortemaker ◽  
M.A. Van’t Hof ◽  
J.A. Jansen ◽  
N.H.J. Creugers

A systematic review was performed on studies investigating the effects of implant surface roughness on bone response and implant fixation. We searched the literature using MEDLINE from 1953 to 2003. Inclusion criteria were: (1) abstracts of animal studies investigating implant surface roughness and bone healing; (2) observations of three-month bone healing, surface topography measurements, and biomechanical tests; (3) provision of data on surface roughness, bone-to-implant contact, and biomechanical test values. The literature search revealed 5966 abstracts. There were 470, 23, and 14 articles included in the first, second, and third selection steps, respectively. Almost all papers showed an enhanced bone-to-implant contact with increasing surface roughness. Six comparisons were significantly positive for the relationship of bone-to-implant contact and surface roughness. Also, a significant relation was found between push-out strength and surface roughness. Unfortunately, the eventually selected studies were too heterogeneous for inference of data. Nevertheless, the statistical analysis on the available data provided supportive evidence for a positive relationship between bone-to-implant contact and surface roughness.


2000 ◽  
Author(s):  
Craig A. Simmons ◽  
Shaker A. Meguid ◽  
Robert M. Pilliar

Abstract The clinical success of bone-interfacing orthopaedic and dental implants is dependent on adequate fixation of the implant by mechanical interlock with ingrown bone tissue (i.e., functional osseointegration). The rate and reliability with which osseointegration is achieved are influenced by a number of factors, including the surface geometry of the implant (Thomas and Cook, 1985; Simmons et al., 1999). However, the mechanisms by which implant surface geometry influences initial bone formation remain unresolved. Identifying the factors that allow bone-interfacing implants to osseointegrate more rapidly and reliably should lead to improvements in their use and design.


Sign in / Sign up

Export Citation Format

Share Document