Combination of parathyroid hormone pretreatment and mechanical stretch promotes osteogenesis of periodontal ligament fibroblasts

Author(s):  
Fan Li ◽  
Mengya He ◽  
Shengnan Li ◽  
Yuxing Bai
2020 ◽  
Vol 185 (Supplement_1) ◽  
pp. 644-648
Author(s):  
William Gilbert ◽  
Jeremy L Goodin ◽  
James C McPherson ◽  
Augustine H Chuang

Abstract Introduction Periodontal ligament fibroblasts (PDLFs) play a vital role in periodontal regeneration. Parathyroid hormone (PTH) is important in catabolic regulation on osteoclasts; it also has anabolic effects on hard tissue formation. Using an in vitro wound repopulation model, this study investigated the effect of continual intermittent administration of PTH on PDLFs wound repopulation. Methods and Materials: PDLFs were grown in 12-well plates and divided into 0 (control), 5, 10, 20, 40, and 80 nM of PTH treatments. A 3-mm wound was created on confluent and synchronized cells. Six PTH treatments were initiated using serum-free medium with supplements. Cell repopulation was measured at four time points: 5, 10, 15, and 20 days. Results A 5% increase wound repopulation showed an enhancement on day 10 for all treatment groups as compared to control groups. On days 15 and 20, treatment groups showed a decrease in proliferation and migration compared to controls with significant decreases at concentrations of 40 and 80 nM. Conclusion Continual intermittent treatment with PTH has the potential to enhance proliferation and migration of PDLFs for wound repopulation at early time points. A dose-dependent correlation was seen with a positive trend on day 10 while a significant decrease on day 20.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 932
Author(s):  
Julia Brockhaus ◽  
Rogerio B. Craveiro ◽  
Irma Azraq ◽  
Christian Niederau ◽  
Sarah K. Schröder ◽  
...  

Human Periodontal Ligament Fibroblasts (hPDLF), as part of the periodontal apparatus, modulate inflammation, regeneration and bone remodeling. Interferences are clinically manifested as attachment loss, tooth loosening and root resorption. During orthodontic tooth movement (OTM), remodeling and adaptation of the periodontium is required in order to enable tooth movement. hPDLF involvement in the early phase-OTM compression side was investigated for a 72-h period through a well-studied in vitro model. Changes in the morphology, cell proliferation and cell death were analyzed. Specific markers of the cell cycle were investigated by RT-qPCR and Western blot. The study showed that the morphology of hPDLF changes towards more unstructured, unsorted filaments under mechanical compression. The total cell numbers were significantly reduced with a higher cell death rate over the whole observation period. hPDLF started to recover to pretreatment conditions after 48 h. Furthermore, key molecules involved in the cell cycle were significantly reduced under compressive force at the gene expression and protein levels. These findings revealed important information for a better understanding of the preservation and remodeling processes within the periodontium through Periodontal Ligament Fibroblasts during orthodontic tooth movement. OTM initially decelerates the hPDLF cell cycle and proliferation. After adapting to environmental changes, human Periodontal Ligament Fibroblasts can regain homeostasis of the periodontium, affecting its reorganization.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 796
Author(s):  
Christian Kirschneck ◽  
Nadine Straßmair ◽  
Fabian Cieplik ◽  
Eva Paddenberg ◽  
Jonathan Jantsch ◽  
...  

During orthodontic tooth movement, transcription factor hypoxia-inducible factor 1α (HIF1α) is stabilised in the periodontal ligament. While HIF1α in periodontal ligament fibroblasts can be stabilised by mechanical compression, in macrophages pressure application alone is not sufficient to stabilise HIF1α. The present study was conducted to investigate the role of myeloid HIF1α during orthodontic tooth movement. Orthodontic tooth movement was performed in wildtype and Hif1αΔmyel mice lacking HIF1α expression in myeloid cells. Subsequently, µCT images were obtained to determine periodontal bone loss, extent of orthodontic tooth movement and bone density. RNA was isolated from the periodontal ligament of the control side and the orthodontically treated side, and the expression of genes involved in bone remodelling was investigated. The extent of tooth movement was increased in Hif1αΔmyel mice. This may be due to the lower bone density of the Hif1αΔmyel mice. Deletion of myeloid Hif1α was associated with increased expression of Ctsk and Acp5, while both Rankl and its decoy receptor Opg were increased. HIF1α from myeloid cells thus appears to play a regulatory role in orthodontic tooth movement.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Erika Calvano Küchler ◽  
Agnes Schröder ◽  
Vinicius Broska Teodoro ◽  
Ute Nazet ◽  
Rafaela Scariot ◽  
...  

Abstract Background This study aimed to investigate, if different physiological concentrations of vitamin D (25(OH)D3) and single nucleotide polymorphisms in vitamin D receptor (VDR) gene have an impact on gene expression in human periodontal ligament (hPDL) fibroblasts induced by simulated orthodontic compressive strain. Methods A pool of hPDL fibroblasts was treated in absence or presence of 25(OH)D3 in 3 different concentrations (10, 40 and 60 ng/ml). In order to evaluate the role of single nucleotide polymorphisms in the VDR gene, hPDL fibroblasts from 9 patients were used and treated in absence or presence of 40 ng/ml 25(OH)D3. Each experiment was performed with and without simulated orthodontic compressive strain. Real-time PCR was used for gene expression and allelic discrimination analysis. Relative expression of dehydrocholesterol reductase (DHCR7), Sec23 homolog A, amidohydrolase domain containing 1 (AMDHD1), vitamin D 25-hydroxylase (CYP2R1), Hydroxyvitamin D-1-α hydroxylase, receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), cyclooxygenase-2 (COX-2) and interleukin-6 (IL6) was assessed. Three single nucleotide polymorphisms in VDR were genotyped. Parametric or non-parametric tests were used with an alpha of 5%. Results RANKL, RANKL:OPG ratio, COX-2, IL-6, DHCR7, CYP2R1 and AMDHD1 were differentially expressed during simulated orthodontic compressive strain (p < 0.05). The RANKL:OPG ratio was downregulated by all concentrations (10 ng/ml, 40 ng/ml and 60 ng/ml) of 25(OH)D3 (mean = 0.96 ± 0.68, mean = 1.61 ± 0.66 and mean = 1.86 ± 0.78, respectively) in comparison to the control (mean 2.58 ± 1.16) (p < 0.05). CYP2R1 gene expression was statistically modulated by the different 25(OH)D3 concentrations applied (p = 0.008). Samples from individuals carrying the GG genotype in rs739837 presented lower VDR mRNA expression and samples from individuals carrying the CC genotype in rs7975232 presented higher VDR mRNA expression (p < 0.05). Conclusions Simulated orthodontic compressive strain and physiological concentrations of 25(OH)D3 seem to regulate the expression of orthodontic tooth movement and vitamin-D-related genes in periodontal ligament fibroblasts in the context of orthodontic compressive strain. Our study also suggests that single nucleotide polymorphisms in the VDR gene regulate VDR expression in periodontal ligament fibroblasts in the context of orthodontic compressive strain.


Sign in / Sign up

Export Citation Format

Share Document