scholarly journals ROCK Inhibitor Converts Corneal Endothelial Cells into a Phenotype Capable of Regenerating In Vivo Endothelial Tissue

2012 ◽  
Vol 181 (1) ◽  
pp. 268-277 ◽  
Author(s):  
Naoki Okumura ◽  
Noriko Koizumi ◽  
Morio Ueno ◽  
Yuji Sakamoto ◽  
Hiroaki Takahashi ◽  
...  
2013 ◽  
Vol 45 (6) ◽  
pp. 387-396 ◽  
Author(s):  
Shanyi Li ◽  
Chan Wang ◽  
Ying Dai ◽  
Yan Yang ◽  
Hongwei Pan ◽  
...  

2021 ◽  
Author(s):  
Mohit Parekh ◽  
Hefin Rhys ◽  
Tiago Ramos ◽  
Stefano Ferrari ◽  
Sajjad Ahmad

Abstract Corneal endothelial cells (CEnCs) are a monolayer of hexagonal cells that are responsible for maintaining the function and transparency of the cornea. Damage or dysfunction of CEnCs could lead to blindness. Human CEnCs (HCEnCs) have shown limited proliferative capacity in vivo hence, their maintenance is crucial. Extracellular vesicles (EVs), are responsible for inter- and intra-cellular communication, proliferation, cell-differentiation, migration, and many other complex biological processes. Therefore, we investigated the effect of EVs (derived from human corneal endothelial cell line – HCEC-12) on corneal endothelial cells. HCEC-12 cells were starved with serum-depleted media for 72 hours. The media was ultracentrifuged at 100,000xg to isolate the EVs. EV counting, characterization, internalization and localization were performed using NanoSight, flow cytometry, Dil labelling and confocal microscopy respectively. HCEC-12 and HCEnCs were cultured with media supplemented with EVs. Extracted EVs showed a homogeneous mixture of exosomes and microvesicles. Cells with EVs decreased the proliferation rate; increased apoptosis and cell size; showed poor wound healing response in vitro and on ex vivo human, porcine, and rabbit CECs. Thirteen miRNAs were found in the EV sample using next generation sequencing. We observed that increased cellular uptake of EVs by CECs limit the proliferative capacity of HCEnCs. These preliminary data may help in understanding the pathology of corneal endothelial dysfunction and provide further insights in the development of future therapeutic treatment options.


2021 ◽  
Author(s):  
Rachelle N. Palchesko ◽  
Yiqin Du ◽  
Moira L. Geary ◽  
Santiago Carrasquilla ◽  
Daniel J. Shiwarski ◽  
...  

AbstractCell injection has emerged as a widespread approach for therapeutic delivery of healthy cells into diseased and damaged tissues to achieve regeneration. However, cell retention, viability and integration at the injection site has generally been poor, driving the need for improved approaches. Additionally, it is unknown how efficiently single cells can integrate and repair tissue level function. Here we have developed a technique to address these issues by engineering islands of interconnected cells on ECM nanoscaffolds that can be non-destructively released from the surface via thermal dissolution of the underlying thermo-responsive polymer. Upon dissolution of the polymer, the ECM nanoscaffold shrink-wraps around the small island of cells, creating a small patch of cells that maintain their cell-cell junctions and cytoskeletal structure throughout collection, centrifugation and injection that we have termed μMonolayers. These μMonolayers were made with corneal endothelial cells, as a model system, as single cell injections of corneal endothelial cells have been used with some success clinically to treat corneal blindness. In vitro our μMonolayers exhibited increased integration compared to single cells into low density corneal endothelial monolayers and in vivo into the high-density healthy rabbit corneal endothelium. These results indicate that this technique could be used to increase the integration of healthy cells into existing tissues to treat not only corneal blindness, but also other conditions such as cystic fibrosis, myocardial infarction, diabetes, etc.One Sentence SummarySmall monolayers of interconnected endothelial cells are shrinkwrapped in a thin layer of ECM and exhibit enhanced adhesion and integration in vivo compared to single cell suspensions.


2021 ◽  
Vol 12 ◽  
pp. 204173142199053
Author(s):  
Mohit Parekh ◽  
Vito Romano ◽  
Kareem Hassanin ◽  
Valeria Testa ◽  
Rintra Wongvisavavit ◽  
...  

The corneal endothelium is the posterior monolayer of cells that are responsible for maintaining overall transparency of the avascular corneal tissue via pump function. These cells are non-regenerative in vivo and therefore, approximately 40% of corneal transplants undertaken worldwide are a result of damage or dysfunction of endothelial cells. The number of available corneal donor tissues is limited worldwide, hence, cultivation of human corneal endothelial cells (hCECs) in vitro has been attempted in order to produce tissue engineered corneal endothelial grafts. Researchers have attempted to recreate the current gold standard treatment of replacing the endothelial layer with accompanying Descemet’s membrane or a small portion of stroma as support with tissue engineering strategies using various substrates of both biologically derived and synthetic origin. Here we review the potential biomaterials that are currently in development to support the transplantation of a cultured monolayer of hCECs.


2020 ◽  
Vol 318 (2) ◽  
pp. C346-C359 ◽  
Author(s):  
Yanyan Zhang ◽  
Zhen Song ◽  
Xuran Li ◽  
Shuo Xu ◽  
Sujun Zhou ◽  
...  

Diabetic corneal endothelial keratopathy is an intractable ocular complication characterized by corneal edema and endothelial decompensation, which seriously threaten vision. It has been suggested that diabetes is associated with pyroptosis, a type of programmed cell death via the activation of inflammation. Long noncoding RNA KCNQ1OT1 is commonly associated with various pathophysiological mechanisms of diabetic complications, including diabetic cardiomyopathy and diabetic retinopathy. However, whether KCNQ1OT1 is capable of regulating pyroptosis and participates in the pathogenesis of diabetic corneal endothelial keratopathy remains unknown. The aim of this study was to investigate the mechanisms of KCNQ1OT1 in diabetic corneal endothelial keratopathy. Here, we reveal that KCNQ1OT1 and pyroptosis can be triggered in diabetic human and rat corneal endothelium, along with the high glucose-treated corneal endothelial cells. However, miR-214 expression was substantially decreased in vivo and in experiments with cultured cells. LDH assay was also used to verify the existence of pyroptosis in high glucose-treated cells. Bioinformatics prediction and luciferase assays showed that KCNQ1OT1 may function as a competing endogenous RNA binding miR-214 to regulate the expression of caspase-1. To further analyze the KCNQ1OT1-mediated mechanism, miR-214 mimic and inhibitor were introduced into the high glucose-treated corneal endothelial cells. The results showed that upregulation of miR-214 attenuated pyroptosis; conversely, knockdown of miR-214 promoted it. In addition, KCNQ1OT1 knockdown by a small interfering RNA decreased pyroptosis factors expressions but enhanced miR-214 expression in corneal endothelial cells. To understand the signaling mechanisms underlying the prepyroptotic properties of KCNQ1OT1, si-KCNQ1OT1 was cotransfected with or without miR-214 inhibitor. The results showed that pyroptosis was repressed after silencing KCNQ1OT1 but was reversed by cotransfection with miR-214 inhibitor, suggesting that KCNQ1OT1 mediated pyroptosis induced by high glucose via targeting miR-214. Therefore, the KCNQ1OT1/miR-214/caspase-1 signaling pathway represents a new mechanism of diabetic corneal endothelial keratopathy progression, and KCNQ1OT1 could potentially be a novel therapeutic target.


Nature ◽  
1973 ◽  
Vol 244 (5415) ◽  
pp. 366-367 ◽  
Author(s):  
PAUL DAVIDOVITS ◽  
M. DAVID EGGER

Author(s):  
Mohammad Amir Mishan ◽  
Sahar Balagholi ◽  
Tahereh Chamani ◽  
Sepehr Feizi ◽  
Zahra-Soheila Soheili ◽  
...  

Purpose: Corneal endothelial cell (CEC) therapy can be used as a promising therapeutic option for patients with various corneal endothelial dysfunctions. In this study, we compared the proliferative effect of human platelet lysate (HPL), as a xeno-free medium supplement, with Y-27632 Rho/rho-associated protein kinase (ROCK) inhibitor, as a wellknown proliferative and adhesive agent for CECs, and fetal bovine serum (FBS) as the control, in the culture medium of human corneal endothelial cells (HCECs). Methods: We isolated HCECs from human donors and treated the cells as three different treatment groups including 20% HPL only, 10 μM Y-27632 ROCK inhibitor, combination of 20% HPL and 10 μM Y-27632 ROCK inhibitor, and 20% FBS as the control group. ELISA cell proliferation assay and cell counting was performed on the treated cells. Finally, HCECs were characterized by morphology and immunocytochemistry (ICC). Results: There was no significant proliferative effect of HPL on cell proliferation compared with the cells treated with Y-27632 ROCK inhibitor or the combination of HPL and Y-27632 ROCK inhibitor, but all the respected treatments had significant inducible effect on cell proliferation as compared with FBS-treated cells. The cells grown in all three treatment groups exhibited CEC morphology. Also, there was a higher expression of Na+/K+-ATPase and ZO-1, as CEC characteristic markers, in the culture of HCECs treated with HPL as compared with FBS. Conclusion: HPL offers a xeno−free and affordable medium supplement for CEC expansion that can be used in clinical applications.


Sign in / Sign up

Export Citation Format

Share Document