scholarly journals Stabilization mechanism of nitrazepam supersaturated state in nitrazepam/Eudragit®EPO/saccharin solution revealed by NMR measurements

2016 ◽  
Vol 11 (1) ◽  
pp. 58-59 ◽  
Author(s):  
Harunobu Kanaya ◽  
Keisuke Ueda ◽  
Kenjirou Higashi ◽  
Keiji Yamamoto ◽  
Kunikazu Moribe
1992 ◽  
Vol 26 (9-11) ◽  
pp. 2575-2578
Author(s):  
V. Gounaris ◽  
P. R. Anderson ◽  
T. M. Holsen

Colloidal material in landfill leachate were separated and fractionated in size fractions. Analyses were performed to obtain the mass, elemental composition, and pollutants associated with the colloids in each fractions. The stabilization mechanism of the colloids is studied to evaluate their mobility potential.


2010 ◽  
Vol 25 (31) ◽  
pp. 2697-2713
Author(s):  
KOUROSH NOZARI ◽  
SIAMAK AKHSHABI

We construct an inflation model on the Randall–Sundrum I (RSI) brane where a bulk scalar field stabilizes the inter-brane separation. We study impact of the bulk scalar field on the inflationary dynamics on the brane. We proceed in two different approaches: in the first approach, the stabilizing field potential is directly appeared in the Friedmann equation and the resulting scenario is effectively a two-field inflation. In the second approach, the stabilization mechanism is considered in the context of a warp factor so that there is just one field present that plays the roles of both inflaton and stabilizer. We study constraints imposed on the model parameters from recent observations.


2014 ◽  
Vol 908 ◽  
pp. 18-21
Author(s):  
Yan Jun Liu ◽  
Xiao Rong Liu ◽  
Hui Li ◽  
Yong Sheng Li ◽  
Qing Li ◽  
...  

Effects of extraction-stripping loops of organic phase on organic chemical entrainment in the aqueous raffinate in copper solvent extraction were studied in this paper. Results demonstrated that the total amount of organic chemicals lost in the aqueous raffinate decreased with the increase of times of extraction-stripping loops but reached largest at third loop. Entrainment was the dominate way of organic chemicals losing in the aqueous raffinate at early stage of the loops. The formation of entrainment and its stabilization mechanism was also studied. The average size of entrained droplet trended to increase with extraction-stripping loops increasing. Meanwhile, the absolute value of zeta potential trended to decrease. The surface tension of the aqueous raffinate increased after reaching the minimum value 41.3 mN/m at the 3rd loop. It showed that the formation of entrained droplets and its stability were mainly affected by the surface tension of aqueous raffinate.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Andreas Karch ◽  
Lisa Randall

Abstract We study Randall-Sundrum two brane setups with mismatched brane tensions. For the vacuum solutions, boundary conditions demand that the induced metric on each of the branes is either de Sitter, Anti-de Sitter, or Minkowski. For incompatible boundary conditions, the bulk metric is necessarily time-dependent. This introduces a new class of time-dependent solutions with the potential to address cosmological issues and provide alternatives to conventional inflationary (or contracting) scenarios. We take a first step in this paper toward such solutions. One important finding is that the resulting solutions can be very succinctly described in terms of an effective action involving only the induced metric on either one of the branes and the radion field. But the full geometry cannot necessarily be simply described with a single coordinate patch. We concentrate here on the time- dependent solutions but argue that supplemented with a brane stabilization mechanism one can potentially construct interesting cosmological models this way. This is true both with and without a brane stabilization mechanism.


2014 ◽  
Vol 70 (a1) ◽  
pp. C94-C94
Author(s):  
Pawel Kuczera ◽  
Walter Steurer

The structure of d(ecagonal)-Al-Cu-Rh has been studied as a function of temperature by in-situ single-crystal X-ray diffraction in order to contribute to the discussion on energy or entropy stabilization of quasicrystals (QC) [1]. The experiments were performed at 293 K, 1223 K, 1153 K, 1083 K, and 1013 K. A common subset of 1460 unique reflections was used for the comparative structure refinements at each temperature. The results obtained for the HT structure refinements of d-Al-Cu-Rh QC seem to contradict a pure phasonic-entropy-based stabilization mechanism [2] for this QC. The trends observed for the ln func(I(T1 )/I(T2 )) vs.|k⊥ |^2 plots indicate that the best on-average quasiperiodic order exists between 1083 K and 1153 K, however, what that actually means is unclear. It could indicate towards a small phasonic contribution to entropy, but such contribution is not seen in the structure refinements. A rough estimation of the hypothetic phason instability temperature shows that it would be kinetically inaccessible and thus the phase transition to a 12 Å low T structure (at ~800 K) is most likely not phason-driven. Except for the obvious increase in the amplitude of the thermal motion, no other significant structural changes, in particular no sources of additional phason-related configurational entropy, were found. All structures are refined to very similar R-values, which proves that the quality of the refinement at each temperature is the same. This suggests, that concerning the stability factors, some QCs could be similar to other HT complex intermetallic phases. The experimental results clearly show that at least the ~4 Å structure of d-Al-Cu-Rh is a HT phase therefore entropy plays an important role in its stabilisation mechanism lowering the free energy. However, the main source of this entropy is probably not related to phason flips, but rather to lattice vibrations, occupational disorder unrelated to phason flips like split positions along the periodic axis.


2012 ◽  
Vol 429 ◽  
pp. 325-331 ◽  
Author(s):  
Amro M. El Badawy ◽  
Kirk G. Scheckel ◽  
Makram Suidan ◽  
Thabet Tolaymat

2017 ◽  
Vol 35 (11) ◽  
pp. 1180-1187 ◽  
Author(s):  
Wanli Kang ◽  
Jiatong Jiang ◽  
Yao Lu ◽  
Derong Xu ◽  
Hairong Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document