Ethanol suppresses the murine alveolar macrophage response to Streptococcus pneumoniae: Role of A20 and NF-kB signaling

Alcohol ◽  
2021 ◽  
Vol 96 ◽  
pp. 102
Author(s):  
Holly J. Hulsebus ◽  
Kevin M. Najarro ◽  
Rachel H. McMahan ◽  
Elizabeth J. Kovacs
Author(s):  
Emilie Camberlein ◽  
Catherine J. Hyams ◽  
Jeffrey N. Weiser ◽  
Suneeta Khandavilli ◽  
Jonathan M. Cohen ◽  
...  

2017 ◽  
Vol 96 (6) ◽  
pp. 92-98 ◽  
Author(s):  
I.N. Protasova ◽  
◽  
S.V. Domracheva ◽  
O.Yu. Volkova ◽  
V.A. Kalenskij ◽  
...  

2009 ◽  
Vol 72 (1) ◽  
pp. 12-25 ◽  
Author(s):  
Jason W. Rosch ◽  
Geli Gao ◽  
Granger Ridout ◽  
Yong-Dong Wang ◽  
Elaine I. Tuomanen

PEDIATRICS ◽  
1978 ◽  
Vol 62 (4) ◽  
pp. 620-621
Author(s):  
Gerald W. Fischer ◽  
James W. Bass ◽  
George H. Lowell ◽  
Martin H. Crumrine

The article by Bortolussi et al. on pneumococcal septicemia and meningitis in the neonat (Pediatrics 60:352, September 1977) was of great interest to us, since we have been analyzing the effect of antibody directed against Streptococcus pneumoniae on group B Streptococcus type III. We have recently shown (unpublished data) that antibody directed against S. pneumoniae type 14 precipitates the hot hydrochloric acid-extracted polysaccharide antigen of group B Streptococcus type III. Further studies have shown that this antibody is opsonic for group B Streptococcus type III in an in vitro bactericidal assay and protective in a suckling rat model of group B Streptococcus type III sepsis.1


Alcohol ◽  
2019 ◽  
Vol 80 ◽  
pp. 5-16 ◽  
Author(s):  
Juna Konomi Johnson ◽  
Frank L. Harris ◽  
Xiao-Du Ping ◽  
Theresa W. Gauthier ◽  
Lou Ann S. Brown

mBio ◽  
2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Tonia Zangari ◽  
Yang Wang ◽  
Jeffrey N. Weiser

ABSTRACT Epidemiological studies on Streptococcus pneumoniae show that rates of carriage are highest in early childhood and that the major benefit of the pneumococcal conjugate vaccine (PCV) is a reduction in the incidence of nasopharyngeal colonization through decreased transmission within a population. In this study, we sought to understand how anti- S. pneumoniae immunity affects nasal shedding of bacteria, the limiting step in experimental pneumococcal transmission. Using an infant mouse model, we examined the role of immunity (passed from mother to pup) on shedding and within-litter transmission of S. pneumoniae by pups infected at 4 days of life. Pups from both previously colonized immune and PCV-vaccinated mothers had higher levels of anti- S. pneumoniae IgG than pups from non-immune or non-vaccinated mothers and shed significantly fewer S. pneumoniae over the first 5 days of infection. By setting up cross-foster experiments, we demonstrated that maternal passage of antibody to pups either in utero or post-natally decreases S. pneumoniae shedding. Passive immunization experiments showed that type-specific antibody to capsular polysaccharide is sufficient to decrease shedding and that the agglutinating function of immunoglobulin is required for this effect. Finally, we established that anti-pneumococcal immunity and anti-PCV vaccination block host-to-host transmission of S. pneumoniae . Moreover, immunity in either the donor or recipient pups alone was sufficient to reduce rates of transmission, indicating that decreased shedding and protection from acquisition of colonization are both contributing factors. Our findings provide a mechanistic explanation for the reduced levels of S. pneumoniae transmission between hosts immune from prior exposure and among vaccinated children. IMPORTANCE Rates of carriage of the bacterial pathogen Streptococcus pneumoniae are highest among young children, and this is the target group for the pneumococcal conjugate vaccine (PCV). Epidemiological studies have suggested that a major benefit of the PCV is a reduction in host-to-host transmission, which also protects the non-vaccinated population (“herd immunity”). In this study, we examined the role of anti-pneumococcal immunity on nasal shedding and transmission of the pathogen using an infant mouse model. We found that shedding is decreased and transmission is blocked by anti-pneumococcal immunity and PCV vaccination. Additionally, transmission rates decreased if either the infected or contact pups were immune, indicating that reduced shedding and protection from the establishment of colonization are both contributing factors. Our study provides a mechanistic explanation for the herd immunity effect seen after the introduction of PCV and identifies potential points of intervention, which may have implications for future vaccine development.


2004 ◽  
Vol 72 (5) ◽  
pp. 3077-3080 ◽  
Author(s):  
Francesco Iannelli ◽  
Damiana Chiavolini ◽  
Susanna Ricci ◽  
Marco Rinaldo Oggioni ◽  
Gianni Pozzi

ABSTRACT The role of pneumococcal surface protein C (PspC; also called SpsA, CbpA, and Hic) in sepsis by Streptococcus pneumoniae was investigated in a murine infection model. The pspC gene was deleted in strains D39 (type 2) and A66 (type 3), and the mutants were tested by being injected intravenously into mice. The animals infected with the mutant strains showed a significant increase in survival, with the 50% lethal dose up to 250-fold higher than that for the wild type. Our findings indicate that PspC affords a decisive contribution to sepsis development.


Sign in / Sign up

Export Citation Format

Share Document