macrophage dysfunction
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 38)

H-INDEX

23
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Victoria Kwon ◽  
Peiwen Cai ◽  
Cameron Dixon ◽  
Victoria Hamlin ◽  
Caroline Spencer ◽  
...  

Inflammation is known to disrupt normal behavior, yet the underlying neuroimmune interactions remain elusive. Here, we investigated whether inappropriate macrophage-evoked inflammation alters CNS control of daily-life animal locomotion using a set of zebrafish mutants selected for specific macrophage dysfunction and microglia deficiency. Large-scale genetic and computational analyses revealed that NOD-like receptor nlrc3l mutants are capable of normal motility and visuomotor response, but preferentially swim less in the daytime, suggesting low motivation rather than physical impairment. Examining their brain activities and structures implicate impaired dopaminergic descending circuits, where neutrophils abnormally infiltrate. Furthermore, neutrophil depletion recovered daytime locomotion. Restoring wild-type macrophages reversed behavioral and neutrophil aberrations, while three other microglia-lacking mutants failed to phenocopy nlrc3l mutants. Overall, we reveal how peripheral inflammatory macrophages with elevated pro-inflammatory cues (including il1b, tnfa, cxcl8a) in the absence of microglia co-opt neutrophils to infiltrate the brain, thereby enabling local modulation of neural circuits affecting spontaneous locomotion.


2021 ◽  
Vol 8 ◽  
Author(s):  
Rahul Y. Mahida ◽  
Aaron Scott ◽  
Dhruv Parekh ◽  
Sebastian T. Lugg ◽  
Kylie B. R. Belchamber ◽  
...  

Background: Impaired alveolar macrophage (AM) efferocytosis may contribute to acute respiratory distress syndrome (ARDS) pathogenesis; however, studies are limited by the difficulty in obtaining primary AMs from patients with ARDS. Our objective was to determine whether an in vitro model of ARDS can recapitulate the same AM functional defect observed in vivo and be used to further investigate pathophysiological mechanisms.Methods: AMs were isolated from the lung tissue of patients undergoing lobectomy and then treated with pooled bronchoalveolar lavage (BAL) fluid previously collected from patients with ARDS. AM phenotype and effector functions (efferocytosis and phagocytosis) were assessed by flow cytometry. Rac1 gene expression was assessed using quantitative real-time PCR.Results: ARDS BAL treatment of AMs decreased efferocytosis (p = 0.0006) and Rac1 gene expression (p = 0.016); however, bacterial phagocytosis was preserved. Expression of AM efferocytosis receptors MerTK (p = 0.015) and CD206 (p = 0.006) increased, whereas expression of the antiefferocytosis receptor SIRPα decreased following ARDS BAL treatment (p = 0.036). Rho-associated kinase (ROCK) inhibition partially restored AM efferocytosis in an in vitro model of ARDS (p = 0.009).Conclusions: Treatment of lung resection tissue AMs with ARDS BAL fluid induces impairment in efferocytosis similar to that observed in patients with ARDS. However, AM phagocytosis is preserved following ARDS BAL treatment. This specific impairment in AM efferocytosis can be partially restored by inhibition of ROCK. This in vitro model of ARDS is a useful tool to investigate the mechanisms by which the inflammatory alveolar microenvironment of ARDS induces AM dysfunction.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4917
Author(s):  
Savannah M. Aitcheson ◽  
Francesca D. Frentiu ◽  
Sheree E. Hurn ◽  
Katie Edwards ◽  
Rachael Z. Murray

Macrophages play a prominent role in wound healing. In the early stages, they promote inflammation and remove pathogens, wound debris, and cells that have apoptosed. Later in the repair process, they dampen inflammation and secrete factors that regulate the proliferation, differentiation, and migration of keratinocytes, fibroblasts, and endothelial cells, leading to neovascularisation and wound closure. The macrophages that coordinate this repair process are complex: they originate from different sources and have distinct phenotypes with diverse functions that act at various times in the repair process. Macrophages in individuals with diabetes are altered, displaying hyperresponsiveness to inflammatory stimulants and increased secretion of pro-inflammatory cytokines. They also have a reduced ability to phagocytose pathogens and efferocytose cells that have undergone apoptosis. This leads to a reduced capacity to remove pathogens and, as efferocytosis is a trigger for their phenotypic switch, it reduces the number of M2 reparative macrophages in the wound. This can lead to diabetic foot ulcers (DFUs) forming and contributes to their increased risk of not healing and becoming infected, and potentially, amputation. Understanding macrophage dysregulation in DFUs and how these cells might be altered, along with the associated inflammation, will ultimately allow for better therapies that might complement current treatment and increase DFU’s healing rates.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yiming Ma ◽  
Yingjiao Long ◽  
Yan Chen

Cigarette smoke damages a wide range of immunological functions, including innate and adaptive immune responses. Emerging literature demonstrates that inflammasome constitutes an essential component in innate immune response. In this review, we focus on the cumulative mechanisms of inflammasome in cigarette smoke-related diseases and physiopathological disorders, and summarize potential therapeutic opportunities targeting inflammasome. This review suggests that inflammasomes (NLRP3, NLRP6, NLRP12 and AIM2) are involved in the pathogenesis of several cigarette smoke-related diseases (including COPD, ALI, atherosclerosis, kidney injury, bladder dysfunction, and oral leukoplakia) and physiopathological disorders (macrophage dysfunction, endothelial barrier dysfunction, podocyte injury, and ubiquitin-mediated proteasomal processing). MyD88/NF-κB, HMGB1, production of ROS, endoplasmic reticulum stress and mitochondrial dysfunction, and Ca2+ influx are potentially involved in cigarette smoke induced-inflammasome activation. Strategies targeting ROS/NLRP3 inflammasome axis are most widely investigated and show potential therapeutic effects.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mohammad Y. Bader ◽  
Melanie A. Lam ◽  
Fernando Munoz ◽  
Leslie Thompson ◽  
Ranjit I. Kylat

Background: Intravenous lipid emulsions (IL) are an important part of parenteral nutrition (PN) to meet essential fatty acid (EFA) requirements and metabolic demands of neonates and preterm infants. Some critically-ill neonates may not metabolize IL effectively which can lead to hypertriglyceridemia. Risks associated with this include increased pulmonary vascular resistance, displaced bilirubins, and platelet or macrophage dysfunction. Serum triglyceride (TG) concentration is used as a marker for lipid tolerance and predictor of potential complications involved with IL administration, but the clinical significance of this is still debated. Management of TG levels with regard to timing of laboratory tests, the ideal goal range, and duration of infusion of IL varies across institutions and is not standardized.Methods: Single-center, retrospective study of newborn infants receiving parenteral nutrition (PN). Fasting and non-fasting TG levels were drawn during the same lipid infusion of 2–3g/kg/day. The primary outcome was the difference between fasting and non-fasting TG levels. Statistical assessment of continuous data was done with student t-test and nominal data was evaluated using X2-test and logistic regression.Results: Forty infants were included with mean gestational age at birth of 29.5 ± 3.4 weeks and mean birth weight of 1.3 ± 0.5 kg. Mean time between lab draws while on same IL dose was 11.6 ± 0.2 h with resulting mean fasting and non-fasting (random) TG levels 82 ± 40 mg/dL (95% CI 68.4, 97.6) and 101 ± 40 mg/dL (95% CI 88.5, 115.8), respectively. Mean difference between TG levels during lipid-free interval and during infusion was −18.6 ± 51.2 mg/dL (95% CI −35.0, −2.3; p = 0.03).Conclusion: We concluded there is no difference in the management of IL, when TG level was drawn randomly or as fasting sample. Obtaining TG level during routine lab draws is appropriate. We extrapolated that the administration of IL over 24 h will not interfere with TG level.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaojun Feng ◽  
Wenxu Chen ◽  
Xiayun Ni ◽  
Peter J. Little ◽  
Suowen Xu ◽  
...  

Metformin is one of the most widely prescribed hypoglycemic drugs and has the potential to treat many diseases. More and more evidence shows that metformin can regulate the function of macrophages in atherosclerosis, including reducing the differentiation of monocytes and inhibiting the inflammation, oxidative stress, polarization, foam cell formation and apoptosis of macrophages. The mechanisms by which metformin regulates the function of macrophages include AMPK, AMPK independent targets, NF-κB, ABCG5/8, Sirt1, FOXO1/FABP4 and HMGB1. On the basis of summarizing these studies, we further discussed the future research directions of metformin: single-cell RNA sequencing, neutrophil extracellular traps (NETs), epigenetic modification, and metformin-based combination drugs. In short, macrophages play an important role in a variety of diseases, and improving macrophage dysfunction may be an important mechanism for metformin to expand its pleiotropic pharmacological profile. In addition, the combination of metformin with other drugs that improve the function of macrophages (such as SGLT2 inhibitors, statins and IL-1β inhibitors/monoclonal antibodies) may further enhance the pleiotropic therapeutic potential of metformin in conditions such as atherosclerosis, obesity, cancer, dementia and aging.


Author(s):  
Lulingxiao Nie ◽  
PengFei Zhao ◽  
Ziqi Yue ◽  
Peng Zhang ◽  
Ning Ji ◽  
...  

Author(s):  
Minfei Jiang ◽  
Aobuliaximu Yakupu ◽  
Haonan Guan ◽  
Jiaoyun Dong ◽  
Yingkai Liu ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3308
Author(s):  
Miriam Hetzel ◽  
Mania Ackermann ◽  
Nico Lachmann

Macrophages act as immune scavengers and are important cell types in the homeostasis of various tissues. Given the multiple roles of macrophages, these cells can also be found as tissue resident macrophages tightly integrated into a variety of tissues in which they fulfill crucial and organ-specific functions. The lung harbors at least two macrophage populations: interstitial and alveolar macrophages, which occupy different niches and functions. In this review, we provide the latest insights into the multiple roles of alveolar macrophages while unraveling the distinct factors which can influence the ontogeny and function of these cells. Furthermore, we will highlight pulmonary diseases, which are associated with dysfunctional macrophages, concentrating on congenital diseases as well as pulmonary infections and impairment of immunological pathways. Moreover, we will provide an overview about different treatment approaches targeting macrophage dysfunction. Improved knowledge of the role of macrophages in the onset of pulmonary diseases may provide the basis for new pharmacological and/or cell-based immunotherapies and will extend our understanding to other macrophage-related disorders.


Sign in / Sign up

Export Citation Format

Share Document