Coagulant derived from waste biogenic material for sustainable algae biomass harvesting

2020 ◽  
Vol 50 ◽  
pp. 101982 ◽  
Author(s):  
Nurudeen Abiola Oladoja ◽  
Jafar Ali ◽  
Wang Lei ◽  
Nie Yudong ◽  
Gang Pan
2020 ◽  
Vol 248 ◽  
pp. 117150
Author(s):  
Nurudeen A. Oladoja ◽  
Jafar Ali ◽  
Wang Lei ◽  
Nie Yudong ◽  
Gang Pan

Author(s):  
N. I. Chernova ◽  
S. V. Kiseleva ◽  
O. M. Larina ◽  
G. A. Sytchev

Algae biomass is considered as an alternative raw material for the production of biofuels. The search for new types of raw materials, including high-energy types of microalgae, remains relevant, since the share of motor fuels in the structure of the global fuel and energy balance remains consistently high (about 35%), and the price of oil is characterized by high volatility. The authors have considered the advantages of microalgae as sources of raw materials for fuel production. Biochemical and thermochemical conversion are proposed as technologies for their processing. This paper presents the results of the study of the pyrolysis of the biomass of clonal culture of blue-green microalgae / cyanobacteriumArthrospira platensis rsemsu 1/02-Pfrom the collection of the Research Laboratory of Renewable Energy Sources of the Lomonosov Moscow State University. An experiment to study the process of pyrolysis of microalgae biomass was carried out at the experimental facility of the Institute of High Temperatures RAS in pure nitrogen grade 6.0 to create an oxygen-free environment with a linear heating rate of 10 ºС / min from room temperature to 1000 ºС. The whole process of pyrolysis proceeded in the field of endothermy. The specific amounts of solid residue, pyrolysis liquid and gaseous products were experimentally determined. As a result of the pyrolysis of microalgae biomass weighing 15 g, the following products were obtained: 1) coal has the mass of the solid residue is 2.68 g, or 17.7% of the initial mass of the microalgae (while 9.3% of the initial mass of the microalgae remained in the reactor); 2) pyrolysis liquid – weight 3.3 g, or 21.9% of the initial weight; 3) non-condensable pyrolysis gases – weight 1.15 l. The specific volumetric gas yield (the amount of gas released from 1 kg of the starting material) was 0.076 Nm3/ kg. The analysis of the composition and specific volume yield of non-condensable pyrolysis gases formed in the process of pyrolysis, depending on temperature. It is shown that with increasing temperature, the proportion of highcalorie components of the gas mixture (hydrogen, methane and carbon monoxide) increases. The calorific value of the mixture of these gases has been estimated.


2018 ◽  
Vol 69 (5) ◽  
pp. 1089-1098
Author(s):  
Elena Suzana Biris Dorhoi ◽  
Maria Tofana ◽  
Simona Maria Chis ◽  
Carmen Elena Lupu ◽  
Ticuta Negreanu Pirjol

The valorification of the marine biomass is an important resource for many industries like pharmaceutical, supplying raw material for the extraction of bioactive substances (vitamins, sterols and collagen), cosmetics, biofertilizers and wastewater treatment. In the last years a special attention has been given to the use of macroalgae. The aim of this study was to emphasize the capacity of two representative green algae species frequent presents on the Romanian shore, Ulva lactuca (L.) and Cladophora vagabunda (L.) Hoek, to remove two usual detergents from wastewater. The green algae washed, dried at room temperature, macerated to powder were introduced into different filter paper for comparison, then immersed in waste water treated with different concentrations of detergents. Tap water was used for the experiment. The results show that Ulva lactuca (L.) species is suitable than Cladophora vagabunda (L.) Hoek species, for wastewater treatment.


2001 ◽  
Vol 1 (1) ◽  
pp. 17-23 ◽  
Author(s):  
E. Jungo ◽  
Petra M. Visser ◽  
Jasper Stroom ◽  
Luuc R. Mur

The problem of Lake Nieuwe Meer (area = 1.3 km2, max. depth 30 m, Ptot = 500 mg/m3) was extensive growth of Microcystis with disturbing scum forming. Since 1993 the lake has been artificially mixed in summer by a bubble plume installation. The result is quite successful since the mass of Microcystis is up to 20 times lower than in the years before mixing and no scum is present any more. The study in Lake Nieuwe Meer showed a shift from cyanobacterial dominance (mainly Microcystis) to flagellates, green-algae and diatoms when artificial mixing was applied. Total phosphorus and nitrogen concentrations did not change as a result of mixing and had apparently no effect on the shift in the phytoplankton composition. The chlorophyll-a concentration was much lower in the mixed lake as a result of dilution. The total algae biomass decreased. The transparency did not improve. The total heat energy of the lake is slightly higher than before mixing but still remains in the range of annual fluctuation. The temperature on the surface is approximately 2°C lower. In the whole water-body oxygen was always higher than 5 mg/l. Living space for fish is therefore wider. The installation in Lake Nieuwe Meer consists of flexible pipes near the sediment, built in a way to prevent sediment erosion and transport into the water. There are no constructions in the water-body. All mechanical parts are on land. The layout of the installation is shown in Fig. 1. Installed compressor energy is 85 kW. This is equivalent to an upper middle-class motor-car. The design was made specifically for this problem. It is based on the physical data of the algae and the plant. It would be beneficial to use this 7 year's experience for further applications e.g. elimination of toxic algae in drinking-water reservoirs.


2017 ◽  
Vol 10 (1) ◽  
pp. 92-99 ◽  
Author(s):  
Hércules Rezende Freitas

Polyunsaturated fatty acids (PUFAs) comprise about 35-40% of the total lipid content from green algaeChlorella, reaching up to 24% linoleic acid and 27% α-linolenic acid inC. vulgaris. Also, microalgae nutrient composition may be modulated by changes in the culture medium, increasing fatty acid and microelement concentrations in the algae biomass. PUFAs, such as α-linolenic (n-3) and linoleic (n-6) acids, as well as its derivatives, are considered essential for dietary consumption, and their ability to regulate body chemistry has been recently explored in depth. A balanced fatty acid consumption is shown to counteract the negative effects of western diets, such as chronic inflammation and glucose intolerance. In this brief commentary, technological and practical uses ofC. vulgarisare explored as means to improve dietary quality and, ultimately, human health.


2021 ◽  
pp. 111359
Author(s):  
Floriana Iasimone ◽  
Jordan Seira ◽  
Antonio Panico ◽  
Vincenzo De Felice ◽  
Francesco Pirozzi ◽  
...  

2021 ◽  
pp. 100067
Author(s):  
Naba Kumar Kalita ◽  
Ninad Anil Damare ◽  
Doli Hazarika ◽  
Purabi Bhagabati ◽  
Ajay Kalamdhad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document