MANUFACTURING GASEOUS PRODUCTS BY PYROLYSIS MICROALGAE BIOMASS

Author(s):  
N. I. Chernova ◽  
S. V. Kiseleva ◽  
O. M. Larina ◽  
G. A. Sytchev

Algae biomass is considered as an alternative raw material for the production of biofuels. The search for new types of raw materials, including high-energy types of microalgae, remains relevant, since the share of motor fuels in the structure of the global fuel and energy balance remains consistently high (about 35%), and the price of oil is characterized by high volatility. The authors have considered the advantages of microalgae as sources of raw materials for fuel production. Biochemical and thermochemical conversion are proposed as technologies for their processing. This paper presents the results of the study of the pyrolysis of the biomass of clonal culture of blue-green microalgae / cyanobacteriumArthrospira platensis rsemsu 1/02-Pfrom the collection of the Research Laboratory of Renewable Energy Sources of the Lomonosov Moscow State University. An experiment to study the process of pyrolysis of microalgae biomass was carried out at the experimental facility of the Institute of High Temperatures RAS in pure nitrogen grade 6.0 to create an oxygen-free environment with a linear heating rate of 10 ºС / min from room temperature to 1000 ºС. The whole process of pyrolysis proceeded in the field of endothermy. The specific amounts of solid residue, pyrolysis liquid and gaseous products were experimentally determined. As a result of the pyrolysis of microalgae biomass weighing 15 g, the following products were obtained: 1) coal has the mass of the solid residue is 2.68 g, or 17.7% of the initial mass of the microalgae (while 9.3% of the initial mass of the microalgae remained in the reactor); 2) pyrolysis liquid – weight 3.3 g, or 21.9% of the initial weight; 3) non-condensable pyrolysis gases – weight 1.15 l. The specific volumetric gas yield (the amount of gas released from 1 kg of the starting material) was 0.076 Nm3/ kg. The analysis of the composition and specific volume yield of non-condensable pyrolysis gases formed in the process of pyrolysis, depending on temperature. It is shown that with increasing temperature, the proportion of highcalorie components of the gas mixture (hydrogen, methane and carbon monoxide) increases. The calorific value of the mixture of these gases has been estimated.

2021 ◽  
Vol 247 ◽  
pp. 01056
Author(s):  
Alexey Demin ◽  
Grigorii Pavlov ◽  
Mansur Khasiyatullov

The results of the study of joint pyrolysis of various types of waste (municipal solid waste, plastic waste, etc.) are presented. Preliminarily crushed and dried wastes were fed into the pyrolysis chamber of the model experimental setup. Thermal energy required for heating raw materials and carrying out their thermal destruction was obtained by burning a part of the pyrolysis gases. The rest of these gases were removed from the pyrolysis chamber and cooled. The temperature in the pyrolysis zone was about 650 °C. Plant productivity was up to 500 kg/h. The target product was the liquid phase, which is a mixture of hydrocarbon compounds. When organizing the processes, the yield of solid carbon residue was minimized. The obtained mass ratio of the final gas/liquid products was approximately equal to 1/6. Experimental results of the analysis of the chemical composition of the gas and liquid fractions are presented. The results of modeling the combustion of pyrolysis products at different amounts of supplied air are also shown. The operating parameters at which the optimum temperature level in the pyrolysis zone is maintained are numerically determined and recommended.


2015 ◽  
Vol 1129 ◽  
pp. 621-628 ◽  
Author(s):  
Sandra Cunha ◽  
José Aguiar ◽  
Kamil Zalegowski ◽  
Andrzej Garbacz ◽  
Patrícia Soares ◽  
...  

The construction industry is responsible for high energy and raw materials consumption. Thus, it is important to minimize the high energy consumption by taking advantage of renewable energy sources and reusing industrial waste, decreasing the extraction of natural materials. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing to the thermal comfort and reduction of the use of heating and cooling equipment, using only the energy supplied by the sun. The simultaneous incorporation of PCM and fly ash (FA) can reduce the energetic consumption and the amount of materials landfilled. However, the addition of these materials in mortars modifies its characteristics. The main purpose of this study was the production and characterization in the fresh and hardened state of mortars with incorporation of different contents of PCM and FA. The binders studied were aerial lime, hydraulic lime, gypsum and cement. The proportion of PCM studied was 0%, 20%, 40% and 60% of the mass of the sand. The content of fly ash added to the mortars was 0%, 20%, 40% and 60% of the mass of the binder. It was possible to observe that the incorporation of PCM and fly ash in mortars caused differences in properties such as workability, microstructure, water absorption, compressive strength, flexural strength and adhesion.


Author(s):  
O. M. Salamov ◽  
F. F. Aliyev

The paper discusses the possibility of obtaining liquid and gaseous fuels from different types of biomass (BM) and combustible solid waste (CSW) of various origins. The available world reserves of traditional types of fuel are analyzed and a number of environmental shortcomings that created during their use are indicated. The tables present the data on the conditional calorific value (CCV) of the main traditional and alternative types of solid, liquid and gaseous fuels which compared with CCV of various types of BM and CSW. Possible methods for utilization of BM and CSW are analyzed, as well as the methods for converting them into alternative types of fuel, especially into combustible gases.Reliable information is given on the available oil and gas reserves in Azerbaijan. As a result of the research, it was revealed that the currently available oil reserves of Azerbaijan can completely dry out after 33.5 years, and gas reserves–after 117 years, without taking into account the growth rates of the exported part of these fuels to European countries. In order to fix this situation, first of all it is necessary to use as much as possible alternative and renewable energy sources, especially wind power plants (WPP) and solar photovoltaic energy sources (SFES) in the energy sector of the republic. Azerbaijan has large reserves of solar and wind energy. In addition, all regions of the country have large reserves of BM, and in the big cities, especially in industrial ones, there are CSW from which through pyrolysis and gasification is possible to obtain a high-quality combustible gas mixture, comprising: H2 + CO + CH4, with the least amount of harmful waste. The remains of the reaction of thermochemical decomposition of BM and CSW to combustible gases can also be used as mineral fertilizers in agriculture. The available and projected resources of Azerbaijan for the BM and the CSW are given, as well as their assumed energy intensity in the energy sector of the republic.Given the high energy intensity of the pyrolysis and gasification of the BM and CSW, at the present time for carrying out these reactions, the high-temperature solar installations with limited power are used as energy sources, and further preference is given to the use of WPP and SFES on industrial scale.


Nanoscale ◽  
2021 ◽  
Author(s):  
Woong Choi ◽  
Joon Woo Park ◽  
Woonghyeon Park ◽  
Yousung Jung ◽  
Hyunjoon Song

Electrochemical CO2 reduction reaction (eCO2RR) has been considered one of the potential technologies to store electricity from renewable energy sources into chemical energy. For this aim, designing catalysts with high...


2021 ◽  
Vol 13 (3) ◽  
pp. 1360
Author(s):  
Teodora M. Șoimoșan ◽  
Ligia M. Moga ◽  
Livia Anastasiu ◽  
Daniela L. Manea ◽  
Aurica Căzilă ◽  
...  

Harnessing renewable energy sources (RES) using hybrid systems for buildings is almost a deontological obligation for engineers and researchers in the energy field, and increasing the percentage of renewables within the energy mix represents an important target. In crowded urban areas, on-site energy production and storage from renewables can be a real challenge from a technical point of view. The main objectives of this paper are quantification of the impact of the consumer’s profile on overall energy efficiency for on-site storage and final use of solar thermal energy, as well as developing a multicriteria assessment in order to provide a methodology for selection in prioritizing investments. Buildings with various consumption profiles lead to achieving different values of performance indicators in similar configurations of storage and energy supply. In this regard, an analysis of the consumption profile’s impact on overall energy efficiency, achieved in the case of on-site generation and storage of solar thermal energy, was performed. The obtained results validate the following conclusion: On-site integration of solar systems allowed the consumers to use RES at the desired coverage rates, while restricted by on-site available mounting areas for solar fields and thermal storage, under conditions of high energy efficiencies. In order to segregate the results and support optimal selection, a multicriteria analysis was carried out, having as the main criteria the energy efficiency indicators achieved by hybrid heating systems.


2021 ◽  
Vol 10 (6) ◽  
pp. 233
Author(s):  
Rasmus Karlsson

While the precautionary principle may have offered a sound basis for managing environmental risk in the Holocene, the depth and width of the Anthropocene have made precaution increasingly untenable. Not only have many ecosystems already been damaged beyond natural recovery, achieving a sustainable long-term global trajectory now seem to require ever greater measures of proactionary risk-taking, in particular in relation to the growing need for climate engineering. At the same time, different optical illusions, arising from temporary emissions reductions due to the COVID-19 epidemic and the local deployment of seemingly “green” small-scale renewable energy sources, tend to obscure worsening global trends and reinforce political disinterest in developing high-energy technologies that would be more compatible with universal human development and worldwide ecological restoration. Yet, given the lack of feedback between the global and the local level, not to mention the role of culture and values in shaping perceptions of “sustainability”, the necessary learning may end up being both epistemologically and politically difficult. This paper explores the problem of finding indicators suitable for measuring progress towards meaningful climate action and the restoration of an ecologically vibrant planet. It is suggested that such indicators are essentially political as they reflect, not only different assessments of technological feasibility, but orientations towards the Enlightenment project.


2013 ◽  
Vol 687 ◽  
pp. 255-261 ◽  
Author(s):  
Sandra Cunha ◽  
José Barroso Aguiar ◽  
Victor Ferreira ◽  
António Tadeu

Increasingly in a society with a high growth rate and standards of comfort, the need to minimize the currently high energy consumption by taking advantage of renewable energy sources arises. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing for an increase in the level of thermal comfort and reduction of the use of heating, ventilation and air conditioning (HVAC) equipment, using only the energy supplied by the sun. However, the incorporation of PCM in mortars modifies some of its characteristics. Therefore, the main objective of this study was the characterization of mortars doped with two different phase change materials. Specific properties of different PCM, such as particle size, shape and enthalpy were studied, as well as the properties of the fresh and hardened state of these mortars. Nine different compositions were developed which were initially doped with microcapsules of PCM A and subsequently doped with microcapsules of PCM B. It was possible to observe that the incorporation of phase change materials in mortars causes differences in properties such as compressive strength, flexural strength and shrinkage. After the study of the behaviour of these mortars with the incorporation of two different phase change materials, it was possible to select the composition with a better compromise between its aesthetic appearance, physical and mechanical characteristics.


2017 ◽  
Vol 9 (1) ◽  
pp. 5-14 ◽  
Author(s):  
Maryam Hamlehdar ◽  
Alireza Aslani

Abstract Today, the fossil fuels have dominant share of energy supply in order to respond to the high energy demand in the world. Norway is one of the countries with rich sources of fossil fuels and renewable energy sources. The current work is to investigate on the status of energy demand in Norway. First, energy and electricity consumption in various sectors, including industrial, residential are calculated. Then, energy demand in Norway is forecasted by using available tools. After that, the relationship between energy consumption in Norway with Basic economics parameters such as GDP, population and industry growth rate has determined by using linear regression model. Finally, the regression result shows a low correlation between variables.


2011 ◽  
Vol 43 (3) ◽  
pp. 289-294 ◽  
Author(s):  
J. Zhu ◽  
L. Ye ◽  
F. Wang

A Ti3AlC2/Al2O3 nanocomposite was synthesized using Ti, Al, C and TiO2 as raw materials by a novel combination of high-energy milling and hot pressing. The reaction path of the 3Ti-8C-16Al-9TiO2 mixture of powders was investigated, and the results show that the transitional phases TiC, TixAly and Al2O3 are formed in high-energy milling first, and then TixAly is transformed to the TiAl phase during the hot pressing. Finally, a reaction between TiC and TiAl occurs to produce Ti3AlC2 and the nanosized Ti3AlC2/Al2O3 composite is synthesized. The Ti3AlC2/Al2O3 composite possessed a good combination of mechanical properties with a hardness of 6.0 GPa, a flexural strength of 600 MPa, and a fracture toughness (K1C) of 5.8 MPa?m1/2. The strengthening and toughening mechanisms were also discussed.


2021 ◽  
Vol 17 (1) ◽  
pp. 70-77
Author(s):  
E. Е. Ulyanchenko ◽  
N. N. Vinevskaya

Cultivation and use of Virginia 202 broadleaf skeletal variety for the production of smoking tobacco has broad prospects. Problems of post-harvest processing of large leaves with a massive midrib consist in high energy costs with an artificial drying method or the provision of facilities for long-term natural drying. The aim of the research is to apply physical method of cutting the leaf midrib to intensify drying and to determine the effect of this technique on the quality indicators of raw materials. It has been found that the technique of cutting the midrib on the Virginia 202 variety contributes to a significant optimization of the drying process without reducing the quality of raw materials. The drying time of leaves with the combined method is reduced by 2,8 times, with the natural method – by 2,3 times, and the quality indicators of raw materials improve. Commercial quality is characterized by the yield of 1 commercial grade, for combined drying the yield of 1 grade has increased in comparison with the control sample by 27% and amounted to 86,5%, with natural drying – the increase in yield is 4%. Cutting the midrib increases the fiber yield by 3–5% and contributes to an increase in the volumetric-elastic properties of the fiber, providing an economical consumption of raw materials for the production of smoking articles, the consumption is 676,8–753,8 g/1000 pcs. The gustatory quality improves, raw materials with a cut midrib have optimal values of the ratio of carbohydrate-protein balance in the range of 1,08–1,5, the strength is preserved due to the lower consumption of nicotine during the shorter drying period, in comparison with drying the leaf without cutting the midrib. Cutting the midrib in Virginia 202 is cost effective.


Sign in / Sign up

Export Citation Format

Share Document