Effect of supplementation of maize stover with foliage of various tropical multipurpose trees and Lablab purpureus on intake, rumen fermentation, digesta kinetics and microbial protein supply of sheep

2004 ◽  
Vol 113 (1-4) ◽  
pp. 83-96 ◽  
Author(s):  
I.K Hindrichsen ◽  
P.O Osuji ◽  
A.A Odenyo ◽  
J Madsen ◽  
T Hvelplund
2017 ◽  
Vol 95 (2) ◽  
pp. 884-891 ◽  
Author(s):  
G. V. Kozloski ◽  
C. M. Stefanello ◽  
L. Oliveira ◽  
H. M. N. Ribeiro Filho ◽  
T. J. Klopfenstein

2021 ◽  
pp. 1-13
Author(s):  
Paul Tamayao ◽  
Gabriel O. Ribeiro ◽  
Tim A. McAllister ◽  
Kim H. Ominski ◽  
Atef M. Saleem ◽  
...  

This study investigated the effects of three pine-based biochar products on nutrient disappearance, total gas and methane (CH4) production, rumen fermentation, microbial protein synthesis, and rumen microbiota in a rumen simulation technique (RUSITEC) fed a barley-silage-based total mixed ration (TMR). Treatments consisted of 10 g TMR supplemented with no biochar (control) and three different biochars (CP016, CP024, and CP028) included at 20 g·kg−1 DM. Treatments were assigned to 16 fermenters (n = 4 per treatment) in two RUSITEC units in a randomized block design for a 17 d experimental period. Data were analyzed using MIXED procedure in SAS, with treatment and day of sampling as fixed effects and RUSITEC unit and fermenters as random effects. Biochar did not affect nutrient disappearance (P > 0.05), nor total gas or CH4, irrespective of unit of expression. The volatile fatty acid, NH3-N, total protozoa, and microbial protein synthesis were not affected by biochar inclusion (P > 0.05). Alpha and beta diversity and rumen microbiota families were not affected by biochar inclusion (P > 0.05). In conclusion, biochar did not reduce CH4 emissions nor affect nutrient disappearance, rumen fermentation, microbial protein synthesis, or rumen microbiota in the RUSITEC.


Author(s):  
X. B. Chen ◽  
Adriana T. Mejia ◽  
D. J. Kyle ◽  
E. R. Ørskov

In ruminants, daily urinary excretion of purine derivatives (PD) reflects the absorption of microbial purines and can be used as an index of microbial protein supply (Chen, Ørskov and Hovell, 1991). The application could be extended to farm conditions if measurements based on spot urine samples or plasma could serve as an alternative index. The objective of this study was to examine whether PD concentrations in spot urine or plasma samples vary diurnally during a given feeding regime and if they reflect differences in daily PD excretion induced by varying feed intake.


Author(s):  
X. B. Chen ◽  
C. X. Gu ◽  
W. X. Zhang ◽  
E. R. Ørskov

The ability of rumen microbes to synthesize protein from ammonia-N enables the use of non-protein-N as a N source in ruminant diets. The strategy for feed formulation therefore would be to meet the microbial N requirement with a cheap N source (such as urea) and to increase the proportion of dietary protein for use directly by the host animal. There has been some indication that the efficiency of rumen microbial protein synthesis could be higher if protein N is provided (Stock, Klopfenstein, Brink, Britton and Harmon, 1986). The objective of this experiment was to compare the use of urea and casein as a source of rumen degradable nitrogen (RDN) for the production of microbial protein in sheep.Five male Blackface x Suffolk lambs (33-42 kg live weight) fitted with rumen cannula were used. The animals were fed a restricted amount (721 g DM/day) of a low-N basal diet with or without supplementation with either urea or casein.


Sign in / Sign up

Export Citation Format

Share Document