Ruminal fermentation and degradability of sorghum cultivar whole crop, and grains, using an in vitro gas production technique

2005 ◽  
Vol 123-124 ◽  
pp. 329-339 ◽  
Author(s):  
S.L.S. Cabral Filho ◽  
A.L. Abdalla ◽  
I.C.S. Bueno ◽  
E.F. Nozella ◽  
J.A.S. Rodrigues
2012 ◽  
Vol 11 (6) ◽  
pp. 561-565
Author(s):  
Mohammad Salamataza ◽  
Ramin Salamat Doust-Noba ◽  
Naser Maheri Sis ◽  
Habib Aghdam Shahryar ◽  
Yahya Asadi

2013 ◽  
Vol 179 (1-4) ◽  
pp. 46-53 ◽  
Author(s):  
M.M.Y. Elghandour ◽  
A.Z.M. Salem ◽  
M. Gonzalez-Ronquillo ◽  
J.L. Bórquez ◽  
H.M. Gado ◽  
...  

1998 ◽  
Vol 1998 ◽  
pp. 69-69
Author(s):  
S. Fakhri ◽  
A. R. Moss ◽  
D.I. Givens ◽  
E. Owen

The gas production (GP) technique has previously been used to estimate the gas volume (fermentable energy (FE)) of compound feed ingredients for ruminants (Newbold et al., 1996). It was shown that the FE content of feed mixtures was represented by the combination of the total gas from the incubation of the individual feeds. However this additivity might not be consistent throughout the incubation period. The objectives were to test whether 1. other GP parameters give better estimates of FE for simple mixtures and are they additive; 2. whether organic matter apparently degraded in the rumen (OMADR) explain differences in GP; and 3. to find out if there are any other better measures than OMADR for estimating FE.


2015 ◽  
Vol 36 (6) ◽  
pp. 3897
Author(s):  
Flávio Moreira de Almeida ◽  
José Augusto Gomes Azevêdo ◽  
Ícaro Dos Santos Cabral ◽  
Luiz Gustavo Ribeiro Pereira ◽  
Gherman Garcia Leal de Araújo ◽  
...  

The objective was to evaluate the parameters of kinetics of ruminal fermentation of cocoa husks (CH) treated with alkali and thermal agents, using the semi-automated in vitro gas production technique. Cocoa husks samples were subjected to alkali and thermal methods (effect of time of exposure) treatment, as follows: control; alkaline treatment with calcium hydroxide ((Ca(OH)2) and calcium oxide (CaO), both doses of 15.0; 30.0 and 45.0 g kg-1 of CH; heat treatment in an autoclave at a pressure of 1.23 kg cm-2 (15 psi) and a temperature of 123°C for 30, 60 and 90 minutes. For statistical analysis, orthogonal contrasts and regression. The degradation rate and the final volume of gases of non-fiber carbohydrates decreased with the addition of Ca(OH)2 and CaO, however, for fibrous carbohydrates effects were positive. For each percentage of Ca(OH)2 and CaO included, it is estimated an increase of 5.74 and 2.9% in the final volume of the fiber, respectively. When the heat treatment, a decrease in all parameters was estimated. For each minute of exposure to heat, there was a decrease of 0.4% in total final volume of gases. The alkali treatment can be an efficient alternative for improving the digestibility of fibrous fractions of CH.


Author(s):  
N.D. Meads ◽  
R. Tahmasbi ◽  
N. Jantasila

Greenhouse gas (GHG) emissions from livestock are an important consideration in environmental science. Estimating GHG production can be problematic at a farm or animal level, and requires controlled conditions to produce real data. An in vitro gas production technique (IVGPT) was developed to evaluate forage-based total mixed rations in digestion kinetics and GHG production. Two hundred and sixty samples of complete mixed rations (MR), which included a pasture component used in commercial lactating dairy herds, were collected around NZ across three calendar years, 2017-2019. Twenty of the 260 samples were 100% total mixed rations (TMR) with no pasture content. The samples were submitted for proximate analysis as well as IVGPT to generate GHG production figures. The results showed an average total gas production (TGP) of 129.82 ml/g dry matter (DM), 78.6% true digestibility (TDMD), 125.06 mg/g DM microbial biomass (MB), 20.16 g CH4/kg DM, and 12.8 MJME/kg DM. The average nutrient composition was dry matter (DM) 31.55%, crude protein (CP) 21.85%, neutral detergent fibre (NDF) 44.35%, and starch 7.03%. The IVGPT CH4 production was negatively correlated to NDF (r=-0.312), ADF (r=-0.193), TGP (r=-0.216), and was positively correlated with TDMD (r=0.250), apparent digestibility (ADMD) (r=0.614), starch (r=0.117) and volatile fatty acids (r=0.538). The MR diet showed a strong positive relationship with ADMD digestibility (P=0.01) and a negative relationship with fibre content (NDF, P=0.01 and ADF, P=0.01). However, CH4 production reduced linearly with increasing TGP (P=0.01). The results indicated that a greater CH4 production may be related to higher digestibility of mixed ration.


Sign in / Sign up

Export Citation Format

Share Document