Different Organic Acid Preparations on Fermentation and Microbiological Profile, Chemical Composition, and Aerobic Stability of Whole-plant Corn Silage

Author(s):  
Larissa S. Gheller ◽  
Lucas G. Ghizzi ◽  
Caio S. Takiya ◽  
Nathália T.S. Grigoletto ◽  
Tássia B.P. Silva ◽  
...  
2020 ◽  
Vol 98 (8) ◽  
Author(s):  
Érica B da Silva ◽  
Rebecca M Savage ◽  
Amy S Biddle ◽  
Stephanie A Polukis ◽  
Megan L Smith ◽  
...  

Abstract We evaluated the effects of a chemical additive on the microbial communities, fermentation profile, and aerobic stability of whole-plant corn silage with or without air stress during storage. Whole-plant corn was either untreated or treated with a chemical additive containing sodium benzoate, potassium sorbate, and sodium nitrite at 2 or 3 liters/t of fresh forage weight. Ten individually treated and replicated silos (7.5 liters) were made for each treatment. Half of the silos remained sealed throughout a 63-d storage period, and the other half was subjected to air stress for 2 h/wk. The composition of the bacterial and fungal communities of fresh forage and silages untreated or treated with 2 liters/t of fresh forage weight was analyzed by Illumina Miseq sequencing. Treated silage had greater (P < 0.05) aerobic stability than untreated, even when subjected to air stress during storage, but the numbers of yeasts culturable on selective agar were not affected. However, the additive reduced the relative abundance (RA) of the lactating-assimilating yeast Candida tropicalis (P < 0.01). In air-stressed silages, untreated silage had a greater (P < 0.05) RA of Pichia kudriavzevii (also a lactate assimilator) than treated silage, whereas treated silage was dominated by Candida humilis, which is usually unable to assimilate lactate or assimilates it slowly. The additive improved the aerobic stability by specifically preventing the dominance of yeast species that can consume lactate and initiate aerobic spoilage. To the best of our knowledge, this is the first work that identifies the specific action of this additive on shifting the microbial communities in corn silage.


2018 ◽  
Vol 53 (9) ◽  
pp. 1045-1052
Author(s):  
Mateus Merlo Coelho ◽  
Lúcio Carlos Gonçalves ◽  
José Avelino Santos Rodrigues ◽  
Kelly Moura Keller ◽  
Gustavo Vinícius de Souza dos Anjos ◽  
...  

Abstract: The objective of this work was to evaluate the effects of re-ensiling and bacterial inoculation on the quality of corn silage. The experiment was carried out in a 2x2 factorial design with or without inoculant (association of Lactobacillus plantarum and Propionibacterium acidipropionici), and with re-ensiling after 36 hours of aerobic exposure or only ensiling of the whole plant of 'BRS 1055' corn. The fermentative quality, nutritional parameters, dry matter losses, aerobic stability, and microbiological counts of silages were evaluated. Re-ensiling caused an increase of pH and in acetic acid and propionic acid concentrations, as well as in the dry matter (DM), crude protein, neutral detergent fiber, and neutral detergent fiber crude protein contents. Conversely, there was a reduction in the nonfiber carbohydrates concentration and in in vitro dry matter digestibility for the re-ensiled material. All changes were explained by the higher-effluent production and DM loss of re-ensiled material that was subjected to two compactions. Microbiology was not altered by the treatments. The use of inoculant altered ash content, but it did not influence other parameters. In contrast, re-ensiling after 36 hours of aerobic exposure caused a reduction in the nutritive value of corn silage and accentuated the DM losses.


2016 ◽  
Vol 56 (11) ◽  
pp. 1867 ◽  
Author(s):  
Erika C. Lara ◽  
Fernanda C. Basso ◽  
Flávia B. de Assis ◽  
Fernando A. Souza ◽  
Telma T. Berchielli ◽  
...  

Chemical composition, fermentation characteristics, in vitro digestibility and aerobic stability were evaluated in corn silage inoculated with microbial additives in two different experiments. Inoculant treatments (untreated, Bacillus subtilis and B. subtilis combined with Lactobacillus plantarum) were applied to fresh forages. Chopped corn plants (2B655 Hx) were ensiled in laboratory silos for periods of 7, 14, 21 and 63 days to evaluate the fermentation parameters. The experimental silos were weighed to determine gas losses. After the ensiling period, the silage was sampled to determine chemical composition and in vitro organic matter digestibility. To evaluate aerobic stability, chopped corn plants (AG‐1051) were ensiled in laboratory silos that were opened after 96 days of ensiling. The silage was placed in different buckets containing data loggers. The silage was sampled after 0, 4, 8 and 12 days of exposure to air to evaluate the microbial populations and pH. The data were analysed as a completely randomised design using a mixed repeated-measures model in the MIXED procedure of SAS. To evaluate each treatment relative to the fermentation times, a regression analysis using the PROC REG procedure of SAS was applied. A significance level of P < 0.05 was used. Inoculation with both strains increased lactic acid concentration, whereas the use of B. subtilis alone or combined with L. plantarum improved in vitro apparent organic matter digestibility. In the B. subtilis and B. subtilis combined with L. plantarum silages, moulds and yeasts decreased, and aerobic stability was improved. Inoculation with B. subtilis alone or combined with L. plantarum improved the nutritional value and aerobic stability of corn silage.


Agriculture ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 335
Author(s):  
Ana Paula Maia dos Santos ◽  
Edson Mauro Santos ◽  
Gherman Garcia Leal de Araújo ◽  
Juliana Silva de Oliveira ◽  
Anderson de Moura Zanine ◽  
...  

The current study aimed to evaluate the application effects of the preactivated Lactobacillus buchneri and urea on the fermentative characteristics, chemical composition and aerobic stability in corn silages. The design was completely randomized, in a 6 × 5 factorial arrangement, with six types of additive and five opening times. The treatments consisted of corn silage; corn silage with freeze-dried inoculant; corn silage with freeze-dried inoculant +1.0% urea; corn silage with activated inoculant; corn silage with activated inoculant +1.0% urea, and corn silage with 1.0% urea. Populations of lactic acid bacteria stabilized at the 70th day, with average values of 8.91 and 9.15 log cfu/g for corn silage with freeze-dried inoculant +1.0% urea and corn silage with freeze-dried inoculant, respectively. In contrast, the silages without additives showed significantly lower values of 7.52 log cfu/g forage at the 70th day. The silages with urea (isolated or associated with the inoculant) increased the total nitrogen content. The maximum temperature values were highest in the corn silages without additives, indicating that these silages were more prone to deterioration. The use of Lactobacillus buchneri activated proved to be more efficient in improving the fermentative profile of corn silages than the freeze-dried inoculant. The use of urea as an additive reduced the losses and improved the nutritional value and aerobic stability of corn silages. Additionally, the combination of Lactobacillus buchneri activated and urea may be used as a technique to improve the fermentative profile, chemical composition and aerobic stability of corn silages.


2020 ◽  
Vol 11 ◽  
Author(s):  
Fu-gui Jiang ◽  
Hai-jian Cheng ◽  
Dong Liu ◽  
Chen Wei ◽  
Wen-juan An ◽  
...  

We investigated the variation in microbial community and fermentation characteristics of whole-plant corn silage after treatment with lactic acid bacteria (LAB) and organic acids. The fresh corn forages were treated with a combination of L. acidophilus and L. plantarum (106 CFU/g fresh material) or a 7:1:2 ratio of formic acid, acetic acid, and propionic acid (6 mL/g fresh material) followed by 45 or 90 days of ensiling. Silages treated with LAB showed increased lactic acid content and decreased pH after 45 days. Although treatment with LAB or organic acids decreased the common and unique operational taxonomic units, indicating a reduction in microbial diversity, the relative abundance of Lactobacillus was elevated after 45 and 90 days compared with control, which was more distinct in the organic acid groups. Moreover, we found higher levels of acetic acid and increased abundance of Acetobacter in silages treated with organic acids whereas undesirable microorganisms such as Klebsiella, Paenibacillus, and Enterobacter were reduced. In summary, the quality of corn silages was improved by LAB or organic acid treatment in which LAB more effectively enhanced lactic acid content and reduced pH while organic acid inhibited the growth of undesirable microorganisms.


Sign in / Sign up

Export Citation Format

Share Document