Triple Combination Antiviral Drug (TCAD) Regimen Composed of Amantadine, Ribavirin, and Oseltamivir Imposes a High Genetic Barrier to the Development of Resistance Against Influenza A Viruses In Vitro

2010 ◽  
Vol 86 (1) ◽  
pp. A40
Author(s):  
Jack Nguyen ◽  
Justin Hoopes ◽  
Elizabeth Driebe ◽  
Kelly Sheff ◽  
David Engelthaler ◽  
...  
2011 ◽  
Vol 55 (12) ◽  
pp. 5703-5709 ◽  
Author(s):  
Won-Young Kim ◽  
Gee Young Suh ◽  
Jin Won Huh ◽  
Sung-Han Kim ◽  
Min-ju Kim ◽  
...  

ABSTRACTA recentin vitrostudy showed that the three compounds of antiviral drugs with different mechanisms of action (amantadine, ribavirin, and oseltamivir) could result in synergistic antiviral activity against influenza virus. However, no clinical studies have evaluated the efficacy and safety of combination antiviral therapy in patients with severe influenza illness. A total of 245 adult patients who were critically ill with confirmed pandemic influenza A/H1N1 2009 (pH1N1) virus infection and were admitted to one of the intensive care units of 28 hospitals in Korea were reviewed. Patients who required ventilator support and received either triple-combination antiviral drug (TCAD) therapy or oseltamivir monotherapy were analyzed. A total of 127 patients were included in our analysis. Among them, 24 patients received TCAD therapy, and 103 patients received oseltamivir monotherapy. The 14-day mortality was 17% in the TCAD group and 35% in the oseltamivir group (P= 0.08), and the 90-day mortality was 46% in the TCAD group and 59% in the oseltamivir group (P= 0.23). None of the toxicities attributable to antiviral drugs occurred in either group of our study, including hemolytic anemia and hepatic toxicities related to the use of ribavirin. Logistic regression analysis indicated that the odds ratio for the association of TCAD with 90-day mortality was 0.58 (95% confidence interval, 0.24 to 1.42;P= 0.24). Although this study was retrospective and did not provide virologic outcomes, our results suggest that the treatment outcome of the triple combination of amantadine, ribavirin, and oseltamivir was comparable to that of oseltamivir monotherapy.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 539
Author(s):  
Klaus Fink ◽  
Andreas Nitsche ◽  
Markus Neumann ◽  
Marica Grossegesse ◽  
Karl-Heinz Eisele ◽  
...  

Since the SARS-CoV-2 pandemic started in late 2019, the search for protective vaccines and for drug treatments has become mandatory to fight the global health emergency. Travel restrictions, social distancing, and face masks are suitable counter measures, but may not bring the pandemic under control because people will inadvertently or at a certain degree of restriction severity or duration become incompliant with the regulations. Even if vaccines are approved, the need for antiviral agents against SARS-CoV-2 will persist. However, unequivocal evidence for efficacy against SARS-CoV-2 has not been demonstrated for any of the repurposed antiviral drugs so far. Amantadine was approved as an antiviral drug against influenza A, and antiviral activity against SARS-CoV-2 has been reasoned by analogy but without data. We tested the efficacy of amantadine in vitro in Vero E6 cells infected with SARS-CoV-2. Indeed, amantadine inhibited SARS-CoV-2 replication in two separate experiments with IC50 concentrations between 83 and 119 µM. Although these IC50 concentrations are above therapeutic amantadine levels after systemic administration, topical administration by inhalation or intranasal instillation may result in sufficient amantadine concentration in the airway epithelium without high systemic exposure. However, further studies in other models are needed to prove this hypothesis.


2020 ◽  
Vol 6 (35) ◽  
pp. eaba7910
Author(s):  
Shuofeng Yuan ◽  
Hin Chu ◽  
Jingjing Huang ◽  
Xiaoyu Zhao ◽  
Zi-Wei Ye ◽  
...  

Targeting a universal host protein exploited by most viruses would be a game-changing strategy that offers broad-spectrum solution and rapid pandemic control including the current COVID-19. Here, we found a common YxxØ-motif of multiple viruses that exploits host AP2M1 for intracellular trafficking. A library chemical, N-(p-amylcinnamoyl)anthranilic acid (ACA), was identified to interrupt AP2M1-virus interaction and exhibit potent antiviral efficacy against a number of viruses in vitro and in vivo, including the influenza A viruses (IAVs), Zika virus (ZIKV), human immunodeficiency virus, and coronaviruses including MERS-CoV and SARS-CoV-2. YxxØ mutation, AP2M1 depletion, or disruption by ACA causes incorrect localization of viral proteins, which is exemplified by the failure of nuclear import of IAV nucleoprotein and diminished endoplasmic reticulum localization of ZIKV-NS3 and enterovirus-A71-2C proteins, thereby suppressing viral replication. Our study reveals an evolutionarily conserved mechanism of protein-protein interaction between host and virus that can serve as a broad-spectrum antiviral target.


2016 ◽  
Vol 7 ◽  
Author(s):  
Jang-gi Choi ◽  
Young-Hee Jin ◽  
Ji-Hye Kim ◽  
Tae Woo Oh ◽  
Nam-Hui Yim ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1171
Author(s):  
Yaron Drori ◽  
Jasmine Jacob-Hirsch ◽  
Rakefet Pando ◽  
Aharona Glatman-Freedman ◽  
Nehemya Friedman ◽  
...  

Influenza viruses and respiratory syncytial virus (RSV) are respiratory viruses that primarily circulate worldwide during the autumn and winter seasons. Seasonal surveillance has shown that RSV infection generally precedes influenza. However, in the last four winter seasons (2016–2020) an overlap of the morbidity peaks of both viruses was observed in Israel, and was paralleled by significantly lower RSV infection rates. To investigate whether the influenza A virus inhibits RSV, human cervical carcinoma (HEp2) cells or mice were co-infected with influenza A and RSV. Influenza A inhibited RSV growth, both in vitro and in vivo. Mass spectrometry analysis of mouse lungs infected with influenza A identified a two-wave pattern of protein expression upregulation, which included members of the interferon-induced protein with the tetratricopeptide (IFITs) family. Interestingly, in the second wave, influenza A viruses were no longer detectable in mouse lungs. In addition, knockdown and overexpression of IFITs in HEp2 cells affected RSV multiplicity. In conclusion, influenza A infection inhibits RSV infectivity via upregulation of IFIT proteins in a two-wave modality. Understanding the immune system involvement in the interaction between influenza A and RSV viruses will contribute to the development of future treatment strategies against these viruses.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1139
Author(s):  
Liva Checkmahomed ◽  
Blandine Padey ◽  
Andrés Pizzorno ◽  
Olivier Terrier ◽  
Manuel Rosa-Calatrava ◽  
...  

Two antiviral classes, the neuraminidase inhibitors (NAIs) and polymerase inhibitors (baloxavir marboxil and favipiravir) can be used to prevent and treat influenza infections during seasonal epidemics and pandemics. However, prolonged treatment may lead to the emergence of drug resistance. Therapeutic combinations constitute an alternative to prevent resistance and reduce antiviral doses. Therefore, we evaluated in vitro combinations of baloxavir acid (BXA) and other approved drugs against influenza A(H1N1)pdm09 and A(H3N2) subtypes. The determination of an effective concentration inhibiting virus cytopathic effects by 50% (EC50) for each drug and combination indexes (CIs) were based on cell viability. CompuSyn software was used to determine synergism, additivity or antagonism between drugs. Combinations of BXA and NAIs or favipiravir had synergistic effects on cell viability against the two influenza A subtypes. Those effects were confirmed using a physiological and predictive ex vivo reconstructed human airway epithelium model. On the other hand, the combination of BXA and ribavirin showed mixed results. Overall, BXA stands as a good candidate for combination with several existing drugs, notably oseltamivir and favipiravir, to improve in vitro antiviral activity. These results should be considered for further animal and clinical evaluations.


2013 ◽  
Vol 20 (8) ◽  
pp. 1333-1337 ◽  
Author(s):  
Rogier Bodewes ◽  
Martina M. Geelhoed-Mieras ◽  
Jens Wrammert ◽  
Rafi Ahmed ◽  
Patrick C. Wilson ◽  
...  

ABSTRACTInfluenza A viruses cause annual epidemics and occasionally pandemics. Antibodies directed to the conserved viral nucleoprotein (NP) may play a role in immunity against various influenza A virus subtypes. Here, we assessed the immunological significance of a human monoclonal antibody directed to NPin vitro. This antibody bound to virus-infected cells but did not display virus-neutralizing activity, complement-dependent cell cytotoxicity, or opsonization of viral antigen for improved antigen presentation to CD8+T cells by dendritic cells.


1984 ◽  
Vol 160 (2) ◽  
pp. 552-563 ◽  
Author(s):  
A R Townsend ◽  
J J Skehel

Using genetically typed recombinant influenza A viruses that differ only in their genes for nucleoprotein, we have demonstrated that repeated stimulation in vitro of C57BL/6 spleen cells primed in vivo with E61-13-H17 (H3N2) virus results in the selection of a population of cytotoxic T lymphocytes (CTL) whose recognition of infected target cells maps to the gene for nucleoprotein of the 1968 virus. Influenza A viruses isolated between 1934 and 1979 fall into two groups defined by their ability to sensitize target cells for lysis by these CTL: 1934-1943 form one group (A/PR/8/34 related) and 1946-1979 form the second group (A/HK/8/68 related). These findings complement and extend our previous results with an isolated CTL clone with specificity for the 1934 nucleoprotein (27, 28). It is also shown that the same spleen cells derived from mice primed with E61-13-H17 virus in vivo, but maintained in identical conditions by stimulation with X31 virus (which differs from the former only in the origin of its gene for NP) in vitro, results in the selection of CTL that cross-react on target cells infected with A/PR/8/1934 (H1N1) or A/Aichi/1968 (H3N2). These results show that the influenza A virus gene for NP can play a role in selecting CTL with different specificities and implicate the NP molecule as a candidate for a target structure recognized by both subtype-directed and cross-reactive influenza A-specific cytotoxic T cells.


2012 ◽  
Vol 93 (8) ◽  
pp. 1645-1648 ◽  
Author(s):  
R. Bodewes ◽  
N. J. Nieuwkoop ◽  
R. J. Verburgh ◽  
R. A. M. Fouchier ◽  
A. D. M. E. Osterhaus ◽  
...  

Exchange of gene segments between mammalian and avian influenza A viruses may lead to the emergence of potential pandemic influenza viruses. Since co-infection of single cells with two viruses is a prerequisite for reassortment to take place, we assessed frequencies of double-infection in vitro using influenza A/H5N1 and A/H1N1 viruses expressing the reporter genes eGFP or mCherry. Double-infected A549 and Madin–Darby canine kidney cells were detected by confocal microscopy and flow cytometry.


Sign in / Sign up

Export Citation Format

Share Document