intranasal instillation
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 17)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Laura Seldeslachts ◽  
Cato Jacobs ◽  
Birger Tielemans ◽  
Eliane Vanhoffelen ◽  
Lauren Van der Sloten ◽  
...  

Influenza-associated pulmonary aspergillosis (IAPA) is a global recognized superinfection in critically ill influenza patients. Baloxavir marboxil, a cap-dependent endonuclease inhibitor, is a newly approved anti-influenza therapeutic. Although the benefits as a treatment for influenza are clear, its efficacy against an influenza-A. fumigatus co-infection has yet to be determined. We investigated the therapeutic effect of baloxavir marboxil in a murine model for IAPA. Immunocompetent mice received intranasal instillation of influenza A followed by orotracheal inoculation with Aspergillus fumigatus 4 days later. Administration of baloxavir marboxil or sham was started at day 0, day 2 or day 4. Mice were monitored daily for overall health status, lung pathology with micro-computed tomography (µCT) and fungal burden with bioluminescence imaging (BLI). In vivo imaging was supplemented with virological, mycological and biochemical endpoint investigations. We observed an improved body weight, survival and viral clearance in baloxavir marboxil treated mice. µCT showed less pulmonary lesions and bronchial dilation after influenza and after Aspergillus co-infection in a treatment-dependent pattern. Furthermore, baloxavir marboxil was associated with effective inhibition of fungal invasion. Hence, our results provide evidence that baloxavir marboxil mitigates severe influenza thereby decreasing the susceptibility to a lethal invasive Aspergillus superinfection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
So Young Kim ◽  
Kyung Woon Kim ◽  
So Min Lee ◽  
Sohyeon Park ◽  
Byeong-Gon Kim ◽  
...  

AbstractNanoparticulate matter activates the aryl hydrocarbon receptor (AhR) pathway in the respiratory system in a process involving the AhR nuclear translocator (ARNT) and cytochrome P450 family 1, member A1 (CYP1A1). We examined changes in AhR-related pathways following intranasal instillation of nanoparticulate matter in the olfactory bulb and cerebral cortex. Twice a day for 5 days per week for 1 week or 2 weeks, 8-week-old Sprague–Dawley rats were intranasally instilled with 10 µL nanoparticulate matter (nano group; n = 36). An equal volume of saline was intranasally instilled in control rats (n = 36). One week after intranasal instillation, olfactory function and Y-maze tests were performed. The expression levels of AhR in the olfactory bulb and temporal cortex were analyzed using western blotting and immunofluorescence assays. The expression levels of AhR, CYP1A1, inducible nitric oxide synthase (iNOS), and five genes encoding cation transporters (ARNT, ATP7B, ATPB1, OCT1, and OCT2) in the olfactory bulb were analyzed using quantitative reverse transcription. The olfactory discrimination capability was reduced in the nano group compared with the control group. Proportional changes in the Y-maze test were not significantly different between the nano and control groups. AhR mRNA and protein expression in the olfactory bulb increased 1.71-fold (P < 0.001) and 1.60-fold (P = 0.008), respectively. However, no significant changes were observed in the temporal cortex. In the olfactory bulb, the expression of ARNT, ATP7B, ATPB1, and OCT2 was downregulated. CYP1A1 and iNOS expression in the olfactory bulb was upregulated compared with that in the temporal cortex. The intranasal instillation of nanoparticulate matter decreased the olfactory discrimination ability, which was accompanied by upregulation of AhR expression and downregulation of cation transporters in the olfactory bulb.


2021 ◽  
Vol 22 (13) ◽  
pp. 6878
Author(s):  
Yaser Hosny Ali Elewa ◽  
Mahmoud Mansour Abd Elwakil ◽  
Osamu Ichii ◽  
Teppei Nakamura ◽  
Sherif Kh. A. Mohamed ◽  
...  

Recently, we clarified the function of mediastinal fat-associated lymphoid clusters (MFALCs) in the progression of several respiratory diseases. However, their role has not yet been identified in the lung asthmatic condition. Hence, we compared the immune cells in lung and MFALCs of C57BL/6N mice on days 3 and 7 following intranasal instillation of either papain (papain group “PG”) or phosphate buffer saline (PBS) (vehicle group “VG”). The PG showed significantly prominent MFALCs, numerous goblet cells (GCs), and higher index ratios of different immune cells (macrophages, natural helper cells (NHC), B- and T-lymphocytes) within the MFALCs and lung than in the VG on both days 3 and 7. Interestingly, a tendency of decreased size of MFALCs and a significant reduction in the number of GCs and immune cells were observed within the MFALCs and lung in the PG on day 7 than on day 3. Furthermore, the quantitative parameters of these immune cells in MFALCs were significantly and positively correlated with the size of MFALCs and immune cells in the lung. This suggested that the possible crosstalk between immune cells within MFALCs and the lung could play a critical role in the progression and recovery of the acute inflammatory lung asthma.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Carmen Herencia ◽  
Melania Guerrero Hue ◽  
Cristina Vazquez-Carballo ◽  
Christian De Tymowski ◽  
Julie Bex-Coudret ◽  
...  

Abstract Background and Aims Hematuria is a common finding in patients with IgA nephropathy (IgAN), occurring mainly after upper respiratory tract infections. Hematuria can lead to acute kidney injury and chronic loss of renal function in IgAN. However, the mechanisms involved in egression of erythrocytes from the glomerular capillaries into the urinary space are unknown. To answer this question, we developed an infection with Streptococcus pneumoniae (SP) in a humanized experimental IgAN model (α1KICD89tg mice) that resembles the pathological and clinical findings of disease (IgA1 and soluble CD89 mesangial deposits, complement activation, proteinuria and hematuria). Method α1KICD89tg mice (12 weeks old) received an intranasal instillation of SP (107 bacteria). Blood, urine and renal samples were obtained during 1 month after induction of respiratory infection. The presence of SP in lungs from these mice was confirmed by microbiological analysis. Hematuria was quantified in the urinary sediment and renal function was determined by biochemical analysis. Renal histological characteristics were evaluated by hematoxylin/eosin, masson's trichrome and PAS staining. IgA glomerular deposits, activation of complement system and infiltration of proinflammatory cells was examined by immunohistochemistry or immunofluorescence. Circulating leukocyte populations were studied on a hemocytometer. Renal inflammatory cytokines, metalloproteases, as well as markers of tubular and glomerular damage were determined in kidneys by RT-PCR and western-blot. To further validate the role of neutrophils in this pathological setting, we selective depleted these cells through a single injection of anti-Ly6G mAb (200 µg/kg i.p). Results SP-intranasal instillation in α1KICD89tg mice increased hematuria, microalbuminuria and proteinuria, peaking at 48h after induction of the respiratory infection. SP instillation caused disruption of the glomerular basement membrane, with decreased expression of the slit diaphragm proteins nephrin and synaptopodin, as well as higher glomerular accumulation of IgA and proteins of complement system (C3, MBL). Hematuria intensity was positively correlated with the presence of interstitial F4/80+ macrophages, matrix metalloproteinase 9 (MMP-9), inflammatory cytokines and chemokines (IL-1β, IL-6, TNF-α, CCL-2, CCL5 and CX3CL1/CX3CR1) as well as p65 NF-κB activation. Hematuria was negatively correlated with anti-inflammatory IL-10 mRNA expression, Factor H levels and collagen IV content. Notably, SP infection induced expression of the tubular injury markers N-GAL and KIM-1. Increased peripheral neutrophils levels were observed in the SP-infected α1KICD89tg mice. Mechanistically, anti-Ly6G-mediated neutrophil depletion reduced SP-mediated hematuria, proteinuria and albuminuria, prevented loss of synaptopodin and nephrin, decreased renal inflammation and MMP-9 expression in α1KICD89tg mice Conclusion In a humanized mouse model of IgAN, hematuria bouts following respiratory tract infections are caused by a neutrophil-mediated alteration of the glomerular filtration barrier (podocyte damage, complement deposits and loss of Collagen IV). These findings may help to unveil novel potential therapeutic approaches to combat one of the key elements in the progression of IgAN and related conditions.


2021 ◽  
Author(s):  
Mengmeng Xu ◽  
Xiaohui Wang ◽  
Lu Xu ◽  
Hai Zhang ◽  
Chenfei Li ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 539
Author(s):  
Klaus Fink ◽  
Andreas Nitsche ◽  
Markus Neumann ◽  
Marica Grossegesse ◽  
Karl-Heinz Eisele ◽  
...  

Since the SARS-CoV-2 pandemic started in late 2019, the search for protective vaccines and for drug treatments has become mandatory to fight the global health emergency. Travel restrictions, social distancing, and face masks are suitable counter measures, but may not bring the pandemic under control because people will inadvertently or at a certain degree of restriction severity or duration become incompliant with the regulations. Even if vaccines are approved, the need for antiviral agents against SARS-CoV-2 will persist. However, unequivocal evidence for efficacy against SARS-CoV-2 has not been demonstrated for any of the repurposed antiviral drugs so far. Amantadine was approved as an antiviral drug against influenza A, and antiviral activity against SARS-CoV-2 has been reasoned by analogy but without data. We tested the efficacy of amantadine in vitro in Vero E6 cells infected with SARS-CoV-2. Indeed, amantadine inhibited SARS-CoV-2 replication in two separate experiments with IC50 concentrations between 83 and 119 µM. Although these IC50 concentrations are above therapeutic amantadine levels after systemic administration, topical administration by inhalation or intranasal instillation may result in sufficient amantadine concentration in the airway epithelium without high systemic exposure. However, further studies in other models are needed to prove this hypothesis.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241266
Author(s):  
De-chu Christopher Tang

Respiratory mucosal infection by airborne microbes is a common event that occurs every day. We report here that intranasal administration of non-replicating adenovirus (Ad) particles to mice could either confer rapid protection against influenza virus (IFV) challenge independent of adaptive immunity, or exacerbate influenza by triggering rapid death. The life-or-death outcome hinges on the time interval between Ad administration and IFV challenge in conjunction with specific mouse/IFV strains. Intranasal instillation of Ad particles 1–47 days prior to IFV challenge conferred rapid protection against influenza in Balb/c mice whereas exposure to Ad 39 days prior to challenge with a specific IFV strain or 1 day post-challenge with that IFV strain induced rapid death in C57BL/6 mice. Notably, consecutive administrations of Ad prior to IFV challenge conferred a synergy in triggering a potent anti-influenza state; even a detrimental Ad exposure 39 days before challenge with the deadly IFV strain was reversed to a beneficial one by subsequent Ad boosts. Results revealed an intricate relationship between infection and innate immunity that is a linchpin around which effects revolve from protective immunity to collateral damage. It is urgent to repeat the experiments with an expanded scope for characterizing the status that defines susceptibility or resistance to IFV infection and subsequently reveal the underlying mechanisms. Whether broad heterologous protective effects induced by AdE and adaptive immunity elicited by vaccination could confer synergy during mitigation of a pandemic remains to be seen.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhihua Ren ◽  
Xuchu Gu ◽  
Jing Fang ◽  
Dongjie Cai ◽  
Zhicai Zuo ◽  
...  

2020 ◽  
Author(s):  
Mengmeng Xu ◽  
Hai Zhang ◽  
Lu Xu ◽  
Xiaohui Wang ◽  
Chenfei Li ◽  
...  

Abstract Background: Fine particulate matter (PM 2.5 ) is an important component of air pollution and can induce lung inflammation and oxidative stress. We hypothesised that PM 2.5 could play a role in the induction of pulmonary fibrosis. We examined whether multiple intranasal instillation of PM 2.5 can induce pulmonary fibrosis in the mouse, and also investigated the underlying pro-fibrotic signaling pathways.Methods: C57/BL6 mice were intranasally instilled with 50 μl of PM 2.5 suspension (7.8 μg/g body weight) or PBS three times a week over 3 weeks, 6 weeks or 9 weeks. To observe the recovery of pulmonary fibrosis after the termination of PM 2.5 exposure, 9 week-PM 2.5 instilled mice were also studied at 3 weeks after termination of instillation.Results: There were significant decreases in total lung capacity (TLC) and compliance (Cchord) in the 9-week PM 2.5 -instilled mice, while there was an increase in total cell counts in bronchoalveolar fluid and lung section in 3-week, 6-week and 9-week PM 2.5 -instilled mice and 9 week-PM 2.5 instilled-3 week-air exposed mice. There were increased histological fibrosis scores with enhanced type I collagen and hydroxyproline deposition in lung tissue in 6-week and 9-week PM 2.5 -instilled mice and 9-week-PM 2.5 instilled-3-week-air-exposed mice. Multiple PM 2.5 instillation resulted in increased expression of TGFβ1, increases of N-Cadherin and Vimentin and decrease of E-Cadherin. It also led to decreases in OPA1 and MFN2, and increases in Parkin, SQSTM1/p62, the ratio of light china (LC) 3B II to LC3B I, PI3k/Akt phosphorylation, NOX4 and NLRP3 expression.Conclusions: The intranasal instillation of PM 2.5 for 9 weeks induced lung inflammation and pulmonary fibrosis, which was linked with aberrant epithelial-mesenchymal transition, mitochondrial damage and mitophagy, as well as activation of TGFβ1-PI3K/Akt and TGFβ1-NOX4 -NLRP3 pathways.


Sign in / Sign up

Export Citation Format

Share Document