The effect of grid generated turbulence on the fluidelastic instability response in parallel triangular tube array

2021 ◽  
Vol 158 ◽  
pp. 108245
Author(s):  
Muhammad Ammar Akram ◽  
Shahab Khushnood ◽  
Syeda Laraib Tariq ◽  
Luqman Ahmad Nizam ◽  
Hafiz Muhammad Ali
2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Marwan Hassan ◽  
Achraf Hossen

This paper presents simulations of a loosely supported cantilever tube subjected to turbulence and fluidelastic instability forces. Several time domain fluid force models are presented to simulate the damping-controlled fluidelastic instability mechanism in tube arrays. These models include a negative damping model based on the Connors equation, fluid force coefficient-based models (Chen, 1983, “Instability Mechanisms and Stability Criteria of a Group of Cylinders Subjected to Cross-Flow. Part 1: Theory,” Trans. ASME, J. Vib., Acoust., Stress, Reliab. Des., 105, pp. 51–58; Tanaka and Takahara, 1981, “Fluid Elastic Vibration of Tube Array in Cross Flow,” J. Sound Vib., 77, pp. 19–37), and two semi-analytical models (Price and Païdoussis, 1984, “An Improved Mathematical Model for the Stability of Cylinder Rows Subjected to Cross-Flow,” J. Sound Vib., 97(4), pp. 615–640; Lever and Weaver, 1982, “A Theoretical Model for the Fluidelastic Instability in Heat Exchanger Tube Bundles,” ASME J. Pressure Vessel Technol., 104, pp. 104–147). Time domain modeling and implementation challenges for each of these theories were discussed. For each model, the flow velocity and the support clearance were varied. Special attention was paid to the tube/support interaction parameters that affect wear, such as impact forces and normal work rate. As the prediction of the linear threshold varies depending on the model utilized, the nonlinear response also differs. The investigated models exhibit similar response characteristics for the lift response. The greatest differences were seen in the prediction of the drag response, the impact force level, and the normal work rate. Simulation results show that the Connors-based model consistently underestimates the response and the tube/support interaction parameters for the loose support case.


2021 ◽  
Vol 143 (2) ◽  
Author(s):  
Joaquin E. Moran ◽  
Yasser Selima

Abstract Fluidelastic instability (FEI) in tube arrays has been studied extensively experimentally and theoretically for the last 50 years, due to its potential to cause significant damage in short periods. Incidents similar to those observed at San Onofre Nuclear Generating Station indicate that the problem is not yet fully understood, probably due to the large number of factors affecting the phenomenon. In this study, a new approach for the analysis and interpretation of FEI data using machine learning (ML) algorithms is explored. FEI data for both single and two-phase flows have been collected from the literature and utilized for training a machine learning algorithm in order to either provide estimates of the reduced velocity (single and two-phase) or indicate if the bundle is stable or unstable under certain conditions (two-phase). The analysis included the use of logistic regression as a classification algorithm for two-phase flow problems to determine if specific conditions produce a stable or unstable response. The results of this study provide some insight into the capability and potential of logistic regression models to analyze FEI if appropriate quantities of experimental data are available.


Author(s):  
Joaquin E. Moran ◽  
David S. Weaver

An experimental study was conducted to investigate damping and fluidelastic instability in tube arrays subjected to two-phase cross-flow. The purpose of this research was to improve our understanding of these phenomena and how they are affected by void fraction and flow regime. The working fluid used was Freon 11, which better models steam-water than air-water mixtures in terms of vapour-liquid mass ratio as well as permitting phase changes due to pressure fluctuations. The damping measurements were obtained by “plucking” the monitored tube from outside the test section using electromagnets. An exponential function was fitted to the tube decay trace, producing consistent damping measurements and minimizing the effect of frequency shifting due to fluid added mass fluctuations. The void fraction was measured using a gamma densitometer, introducing an improvement over the Homogeneous Equilibrium Model (HEM) in terms of density and velocity predictions. It was found that the Capillary number, when combined with the two-phase damping ratio (interfacial damping), shows a well defined behaviour depending on the flow regime. This observation can be used to develop a better methodology to normalize damping results. The fluidelastic results agree with previously presented data when analyzed using the HEM and the half-power bandwidth method. The interfacial velocity is suggested for fluidelastic studies due to its capability for collapsing the fluidelastic data. The interfacial damping was introduced as a tool to include the effects of flow regime into the stability maps.


Author(s):  
Tomomichi Nakamura

Fluidelastic vibration of tube arrays caused by cross-flow has recently been highlighted by a practical event. There have been many studies on fluidelastic instability, but almost all works have been devoted to the tube-vibration in the transverse direction to the flow. For this reason, there are few data on the fluidelastic forces for the in-flow movement of the tubes, although the measured data on the stability boundary has gradually increased. The most popular method to estimate the fluidelastic force is to measure the force acting on tubes due to the flow, combined with the movement of the tubes. However, this method does not give the physical explanation of the root-cause of fluidelastic instability. In the work reported here, the in-flow instability is assumed to be a nonlinear phenomenon with a retarded or delayed action between adjacent tubes. The fluid force acting on tubes are estimated, based on the measured data in another paper for the fixed cylinders with distributed pressure sensors on the surface of the cylinders. The fluid force acting on the downstream-cylinder is assumed in this paper to have a delayed time basically based on the distance between the separation point of the upstream-cylinder to the re-attachment point, where the fluid flows with a certain flow velocity. Two models are considered: a two-cylinder and three–cylinder models, based on the same dimensions as our experimental data to check the critical flow velocity. Both models show the same order of the critical flow velocity and a similar trend for the effect of the pitch-to-diameter ratio of the tube arrays, which indicates this analysis has a potential to explain the in-flow instability if an adequate fluid force is used.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
John Mahon ◽  
Craig Meskell

Fluidelastic instability (FEI) produces large amplitude self-excited vibrations close to the natural frequency of the structure. For fluidelastic instability caused by the damping controlled mechanism, there is a time delay between tube motion and the resulting fluid forces but magnitude and physical cause of this is unclear. This study measures the time delay between tube motion and the resulting fluid forces in a normal triangular tube array with a pitch ratio of 1.32 subject to air cross-flow. The instrumented cylinder was forced to oscillate in the lift direction at three excitation frequencies for a range of flow velocities. Unsteady surface pressures were monitored with a sample frequency of 2 kHz at the mid plane of the instrumented cylinder. The instantaneous fluid forces were obtained by integrating the surface pressure data. A time delay between the tube motion and resulting fluid forces was obtained. The nondimensionalized time delay was of the same order of magnitude assumed in the semi-empirical quasi-steady model (i.e., τ2 = 0.29 d/U). Although, further work is required to provide a parameterized model of the time delay which can be embedded in a model of damping controlled fluidelastic forces, the data already provides some insight into the physical mechanism responsible.


Author(s):  
Tomomichi Nakamura ◽  
Shinichiro Hagiwara ◽  
Joji Yamada ◽  
Kenji Usuki

In-flow instability of tube arrays is a recent major issue in heat exchanger design since the event at a nuclear power plant in California [1]. In our previous tests [2], the effect of the pitch-to-diameter ratio on fluidelastic instability in triangular arrays is reported. This is one of the present major issues in the nuclear industry. However, tube arrays in some heat exchangers are arranged as a square array configuration. Then, it is important to study the in-flow instability on the case of square arrays. The in-flow fluidelastic instability of square arrays is investigated in this report. It was easy to observe the in-flow instability of triangular arrays, but not for square arrays. The pitch-to-diameter ratio, P/D, is changed from 1.2 to 1.5. In-flow fluidelastic instability was not observed in the in-flow direction. Contrarily, the transverse instability is observed in all cases including the case of a single flexible cylinder. The test results are finally reported including the comparison with the triangular arrays.


Sign in / Sign up

Export Citation Format

Share Document