Uncertainty analysis of infinite multiplication factor and nuclide number density based on the UAM-PWR benchmark with respect to cross sections, fission yields and decay half-life

2022 ◽  
Vol 165 ◽  
pp. 108781
Author(s):  
Tiejun Zu ◽  
Zerun Lu ◽  
Fenglin Han ◽  
Nengchuan Shu ◽  
Zhouyu Liu ◽  
...  
1953 ◽  
Vol 31 (3) ◽  
pp. 204-206 ◽  
Author(s):  
Rosalie M. Bartholomew ◽  
R. C. Hawkings ◽  
W. F. Merritt ◽  
L. Yaffe

The thermal neutron capture cross sections of Na23 and Mn55 have been determined using the activation method. The values are 0.53 ± 0.03 and 12.7 ± 0.3 barns respectively with respect to σAul97 = 93 barns. These agree well with recent pile oscillator results. The half-life for Mn56 is found to be 2.576 ± 0.002 hr.


2020 ◽  
pp. 39-46
Author(s):  
О. Kukhotska ◽  
I. Ovdiienko ◽  
M. Ieremenko

The paper presents the results of uncertainty analysis of WWER‑1000 core macroscopic cross sections due to spectral effects during WWER‑1000 fuel burnup and the analysis of cross section sensitivity from thermophysical parameters of the calculated cell, which affect energy spectrum of neutron flux density. The calculation of changes in the isotopic composition during burnup and the preparation of macroscopic cross sections used the developed HELIOS computer model [1] for TVSA, which is currently operated at most Ukrainian WWER‑1000 units. The GRS approach applying Software for Uncertainty and Sensitivity Analyses (SUSA) [2] was chosen to assess the uncertainty of the macroscopic cross sections due to spectral effects and analysis of cross section sensitivity from thermophysical parameters. The spectral effect on macroscopic cross sections was taken into account by calculating the fuel burnup for variational sets of thermophysical parameters (fuel temperature, coolant temperature and density, boric acid concentration) prepared in advance by the SUSA program, as a result of which fuel isotopic composition vectors were obtained. After that, neutronic constants for the reference state were developed for each of the sets of isotopic composition, which corresponded to a certain set of thermophysical parameters. At the next stage, the uncertainty of macroscopic cross sections of the interaction due to the spectral effects on the isotopic composition of the fuel was analyzed using SUSA 4, followed by the analysis of cross section sensitivity from thermophysical parameters of the calculated cell affecting energy spectrum of neutron flux density. In the future, the uncertainty of two-group macroscopic diffusion constants can be used to estimate the overall uncertainty of neutronic characteristics in large-grid core calculations, in particular, in the safety analysis.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Michael L. Graesser ◽  
Jacek K. Osiński

Abstract The thermal freeze-out mechanism for relic dark matter heavier than O(10 − 100 TeV) requires cross-sections that violate perturbative unitarity. Yet the existence of dark matter heavier than these scales is certainly plausible from a particle physics perspective, pointing to the need for a non-thermal cosmological history for such theories. Topological dark matter is a well-motivated scenario of this kind. Here the hidden-sector dark matter can be produced in abundance through the Kibble-Zurek mechanism describing the non-equilibrium dynamics of defects produced in a second order phase transition. We revisit the original topological dark matter scenario, focusing on hidden-sector magnetic monopoles, and consider more general cosmological histories. We find that a monopole mass of order (1–105) PeV is generic for the thermal histories considered here, if monopoles are to entirely reproduce the current abundance of dark matter. In particular, in a scenario involving an early era of matter domination, the monopole number density is always less than or equal to that in a pure radiation dominated equivalent provided a certain condition on critical exponents is satisfied. This results in a larger monopole mass needed to account for a fixed relic abundance in such cosmologies.


2019 ◽  
Vol 97 (11) ◽  
pp. 1206-1209
Author(s):  
Ezgi Tantoğlu ◽  
Nalan Özkan ◽  
R. Taygun Güray

There are 35 proton-rich isotopes between 74Se and 196Hg that cannot be synthesized through neutron captures and β− decays (s- and r-processes). A third process is therefore required for the production of these nuclei, the so-called p-process. The abundance and the origin of the p-nuclei are still not fully understood even though significant experimental and theoretical efforts in astrophysical modeling have been expended in the last two decades. The experimental studies with the activation method to measure cross sections of the relevant reactions have some limitations: the reaction product must be radioactive, should have an appropriate half-life, and its decay should be followed by proper γ-radiations. If the cross section cannot be calculated with the radiation followed by the first beta decay of the product, it can be measured using the second beta decay as an alternative method. In this study, the method and candidate reactions for the cross-section measurements via the second beta decay of the reaction product using the activation method are discussed.


1983 ◽  
Vol 61 (4) ◽  
pp. 754-756 ◽  
Author(s):  
Seiichi Shibata ◽  
Paul J. Karol

An unknown γ-ray of energy 112.5 keV was found in zirconium fractions chemically extracted from isotopically enriched molybdenum targets bombarded with 500 and 800 MeV protons. All evidence suggests that the γ-ray is identifiable with the decay of 84Zr to 84Y. A half-life of 25.7 ± 0.5 min was obtained for 84Zr, which is considerably longer than previously reported half-lives. The absolute abundance of the 112.5 keV γ-ray was also determined. Relative production cross sections for 84Zr were calculated using these results and were consistent with the values interpolated from isotopic distribution curves for spallation reactions.


2020 ◽  
Vol 239 ◽  
pp. 09003
Author(s):  
B. Pritychenko ◽  
O. Schwerer ◽  
J. Totans ◽  
V. Zerkin ◽  
O. Gritzay

Nuclear data collection, evaluation and dissemination activities have been performed worldwide for many years. They are absolutely essential for the overall progress of science and technology to create the complete collections of experimental data sets and associated publications, and store these data in publicly accessible databases. Due to many historical and technological reasons not all published data have been identified and compiled. These "missing data" manifest themselves via scientific publications, data evaluations and nuclear databases comparisons. The detailed analysis of the Nuclear Science References (NSR) and the Experimental Nuclear Reaction (EXFOR) databases shows thousands of previously missed nuclear reaction experiments and creates a roadmap for the creation of complete data records for fission cross sections, yields and covariances. The National Nuclear Data Center (NNDC) program for identification, compilation and storage of missing fission yields data sets is described, and recommendations for improving the databases completeness are given.


Sign in / Sign up

Export Citation Format

Share Document