Heterogeneous Fenton catalysts based on clays, silicas and zeolites

2010 ◽  
Vol 99 (1-2) ◽  
pp. 1-26 ◽  
Author(s):  
Sergio Navalon ◽  
Mercedes Alvaro ◽  
Hermenegildo Garcia
Keyword(s):  
Author(s):  
Jiwei Zhang ◽  
Jingjing Xu ◽  
Shuaixia Liu ◽  
Baoxiang Gu ◽  
Feng Chen ◽  
...  

Background: Coal gangue was used as a catalyst in heterogeneous Fenton process for the degradation of azo dye and phenol. The influencing factors, such as solution pH gangue concentration and hydrogen peroxide dosage were investigated, and the reaction mechanism between coal gangue and hydrogen peroxide was also discussed. Methods: Experimental results showed that coal gangue has the ability to activate hydrogen peroxide to degrade environmental pollutants in aqueous solution. Under optimal conditions, after 60 minutes of treatment, more than 90.57% of reactive red dye was removed, and the removal efficiency of Chemical Oxygen Demand (COD) up to 72.83%. Results: Both hydroxyl radical and superoxide radical anion participated in the degradation of organic pollutant but hydroxyl radical predominated. Stability tests for coal gangue were also carried out via the continuous degradation experiment and ion leakage analysis. After five times continuous degradation, dye removal rate decreased slightly and the leached Fe was still at very low level (2.24-3.02 mg L-1). The results of Scanning Electron Microscope (SEM), energy dispersive X-Ray Spectrometer (EDS) and X-Ray Powder Diffraction (XRD) indicated that coal gangue catalyst is stable after five times continuous reuse. Conclusion: The progress in this research suggested that coal gangue is a potential nature catalyst for the efficient degradation of organic pollutant in water and wastewater via the Fenton reaction.


Author(s):  
Manoj Kumar Panjwani ◽  
Qing Wang ◽  
Yueming Ma ◽  
Yuxuan Lin ◽  
Feng Xiao ◽  
...  

The development of a heterogeneous Fenton-like catalyst, possessing high degradation efficiency in a wide pH range, is crucial for wastewater treatment. The Fe-Mn-SiO2 catalyst was designed, and prepared by a...


Author(s):  
Rui-Xia Yang ◽  
Qiao-Hong Peng ◽  
Bing Yu ◽  
You-Qing Shen ◽  
Hai-Lin Cong

Author(s):  
Sajid Hussain ◽  
Eleonora Aneggi ◽  
Daniele Goi

AbstractInnovations in water technology are needed to solve challenges of climate change, resource shortages, emerging contaminants, urbanization, sustainable development and demographic changes. In particular, conventional techniques of wastewater treatment are limited by the presence of poorly biodegradable organic matter. Alternatively, recent Fenton, Fenton-like and hybrid processes appear successful for cleaning of different types of liquid wastewaters. Here, we review the application of metallic catalyst-H2O2 systems in the heterogeneous Fenton process. Each metallic catalyst-H2O2 system has unique redox properties due to metal oxidation state. Solution pH is a major influencing factor. Catalysts made of iron and cerium form stable complexes with oxidation products and H2O2, thus resulting in reduced activities. Copper forms transitory complexes with oxidation products, but copper catalytic activity is restored during the reaction. Silver and manganese do not form complexes. The catalyst performance for degradation and mineralization decreases in the order: manganese, copper, iron, silver, cerium, yet the easiness of practical application decreases in the order: copper, manganese, iron, silver, cerium.


2021 ◽  
Vol 6 (4) ◽  
pp. 865-875
Author(s):  
Nafis Mahmud ◽  
Abdelbaki Benamor ◽  
Mustafa S. Nasser ◽  
Muneer M. Ba‐Abbad ◽  
Muftah H. El‐Naas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document