A highly active and stable Pd/MoC catalyst for hydrogen production from methanol decomposition

Author(s):  
Fufeng Cai ◽  
Yanjiao Guo ◽  
Jessica Juweriah Ibrahim ◽  
Jun Zhang ◽  
Yuhan Sun
Nanoscale ◽  
2021 ◽  
Author(s):  
Xianyun Peng ◽  
Junrong Hou ◽  
Yuying Mi ◽  
Jiaqiang Sun ◽  
Gaocan Qi ◽  
...  

Electrocatalytic hydrogen evolution reaction (HER) for H2 production is essential for future renewable and clean energy technology. Screening energy-saving, low-cost, and highly active catalysts efficiently, however, is still a grand...


Author(s):  
Piyush Pratap Singh ◽  
Neelkanth Nirmalkar ◽  
Tarak Mondal

Catalytic steam reforming (SR) of agricultural waste derived bio-oil for hydrogen production is a unique technology, offering twin benefits of waste management as well as sustainable energy production. In the...


Author(s):  
Santhosh Kumar Ramasamy ◽  
Ramakrishnan S ◽  
Sampath Prabhakaran ◽  
Ae Kim ◽  
Ranjith Kumar Dharman ◽  
...  

Development of highly active and durable non-precious spinel transition metal sulfide (STMS)-based electrocatalysts plays a vital role in increasing the efficiency of hydrogen production via water electrolysis. Herein, we have...


Author(s):  
Xiaoqiang Zhan ◽  
Zhi Fang ◽  
Bing Li ◽  
Haitao Zhang ◽  
Leyao Xu ◽  
...  

Highly-active heterojunctions hold the pivotal function in photocatalytic hydrogen evolution reaction (HER). Herein, Ta3N5@ReS2 photocatalysts are rationally designed via the combination of template-assisted, hydrothermal and solution-adsorption processes, in which few...


2004 ◽  
Vol 842 ◽  
Author(s):  
Ya Xu ◽  
Satoshi Kameoka ◽  
Kyosuke Kishida ◽  
Masahiko Demura ◽  
An-pang Tsai ◽  
...  

ABSTRACTThe stability of catalytic activity and selectivity of Ni3Al for methanol decomposition were studied by life test at 633 K on the alkali-leached powder samples. The characterization of the samples was carried out by X-ray diffraction, inductively coupled plasma (ICP) analysis, SEM observation, and surface area measurement. The life test showed that the alkali-leached Ni3Al exhibits a very stable activity and a high selectivity for methanol decomposition. The surface characterization after reaction suggests that the high selectivity and stable activity may be attributed to the formation of tiny particles and porous structure which increased the surface area significantly during reaction. These results indicate a possibility of Ni3Al as a catalyst for hydrogen production reaction.


Sign in / Sign up

Export Citation Format

Share Document