scholarly journals Low Flow Analysis and Possible Impact of the Mekong River

2012 ◽  
Vol 1 ◽  
pp. 309-317
Author(s):  
Kunatip Raviwan ◽  
Supasit Konyai
Keyword(s):  
1985 ◽  
Vol 16 (2) ◽  
pp. 105-128 ◽  
Author(s):  
G. V. Loganathan ◽  
C. Y. Kuo ◽  
T. C. McCormick

The transformations (i) SMEMAX (ii) Modified SMEMAX (iii) Power and Probability Distributions (iv) Weibull (α,β,γ) or Extreme value type III (v) Weibull (α,β,0) (vi) Log Pearson Type III (vii) Log Boughton are considered for the low flow analysis. Also, different parameter estimating procedures are considered. Both the Weibull and log Pearson can have positive lower bounds and thus their use in fitting low flow probabilities may not be physically justifiable. A new derivation generalizing the SMEMAX transformation is proposed. A new estimator for the log Boughton distribution is presented. It is found that the Boughton distribution with Cunnane's plotting position provides a good fit to low flows for Virginia streams.


2020 ◽  
Vol 24 (1) ◽  
pp. 189-212 ◽  
Author(s):  
Vo Quoc Thanh ◽  
Dano Roelvink ◽  
Mick van der Wegen ◽  
Johan Reyns ◽  
Herman Kernkamp ◽  
...  

Abstract. Building high dykes is a common measure of coping with floods and plays an important role in agricultural management in the Vietnamese Mekong Delta. However, the construction of high dykes causes considerable changes in hydrodynamics of the Mekong River. This paper aims to assess the impact of the high-dyke system on water level fluctuations and tidal propagation in the Mekong River branches. We developed a coupled 1-D to 2-D unstructured grid using Delft3D Flexible Mesh software. The model domain covered the Mekong Delta extending to the East (South China Sea) and West (Gulf of Thailand) seas, while the scenarios included the presence of high dykes in the Long Xuyen Quadrangle (LXQ), the Plain of Reeds (PoR) and the Trans-Bassac regions. The model was calibrated for the year 2000 high-flow season. Results show that the inclusion of high dykes changes the percentages of seaward outflow through the different Mekong branches and slightly redistributes flow over the low-flow and high-flow seasons. The LXQ and PoR high dykes result in an increase in the daily mean water levels and a decrease in the tidal amplitudes in their adjacent river branches. Moreover, the different high-dyke systems not only have an influence on the hydrodynamics in their own branch, but also influence other branches due to the Vam Nao connecting channel. These conclusions also hold for the extreme flood scenarios of 1981 and 1991 that had larger peak flows but smaller flood volumes. Peak flood water levels in the Mekong Delta in 1981 and 1991 are comparable to the 2000 flood as peak floods decrease and elongate due to upstream flooding in Cambodia. Future studies will focus on sediment pathways and distribution as well as climate change impact assessment.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2252 ◽  
Author(s):  
Hasrul Hazman Hasan ◽  
Siti Fatin Mohd Razali ◽  
Nur Shazwani Muhammad ◽  
Asmadi Ahmad

The frequency and severity of global drought-induced impacts have led to raising awareness of the need for improved river management. Although academic publications on drought have proliferated, a systematic review of literature has not yet been conducted to identify trends, themes, key topics, and authorships. This study aims to evaluate the scientific evidence for the hydrological drought characteristics and the methodologies by performing as a framework. This systematic review performed three-stage screening of literature review for current applicable hydrological drought studies that have been conducted since the year of 2000 concerning methodologies, literature research gaps, and trends, and contribute to future studies. The analysis shows the increasing trends of research and publications in the hydrological drought assessment. The primary research themes are hydrological drought is drought severity, drought vulnerability, and drought forecast. Despite the current research findings, spatial and temporal variability, low flow analysis and regional modelling are the most important to encourage a holistic approach and international collaborations. The finding identified the shortcomings of most research, which are the use of non-standardized methodological and distinct sample sizes, resulting in data summary challenges and unrealistic comparisons.


2001 ◽  
Vol 280 (1) ◽  
pp. H465-H474 ◽  
Author(s):  
Takeshi Matsumoto ◽  
Hiroyuki Tachibana ◽  
Yasuo Ogasawara ◽  
Fumihiko Kajiya

A new high-resolution digital radiographic technique based on the deposition of125I- and 3H-labeled desmethylimipramine (IDMI and HDMI, respectively) was developed for the assessment of spatial and temporal myocardial flow heterogeneity at a microvascular level. The density distributions of two tracers, or relative flow distributions, were determined by subtraction digital radiography using two imaging plates of different sensitivity. The regions resolved are comparable in size to vascular regulatory units (400 × 400 μm2). This method was applied to the measurement of within-layer myocardial flow distributions in Langendorff-perfused rabbit hearts. The validity of this method was confirmed by the strong correlation between regional densities of two tracers injected simultaneously ( r = 0.89 ± 0.03, n = 8). The temporal flow stability was evaluated by a 90-s continuous IDMI injection and subsequent bolus HDMI injection ( n = 8). Regional densities of the two tracers were fairly correlated ( r = 0.86 ± 0.03), indicating that the spatial pattern of flow distribution was stable even at a microvascular level over a 90-s period. The effect of microsphere embolization on the flow distribution was also investigated by the sequential injections of IDMI, 15-μm microspheres, and HDMI at 20-s intervals ( n = 8). Microembolization increased the coefficient of variation of tracer density from 19 to 25% ( P < 0.05), whereas the regional densities of two tracers were still correlated substantially, as in the case of no embolization ( r = 0.84 ± 0.06). Thus the microsphere embolization enhanced flow heterogeneity with increasing flow differences between control high-flow and control low-flow regions but rather maintained the pattern of flow distribution. In conclusion, double-tracer digital radiography will be a promising method for the spatial and temporal myocardial flow analysis at microvascular levels.


2016 ◽  
Vol 20 (7) ◽  
pp. 3027-3041 ◽  
Author(s):  
Long Phi Hoang ◽  
Hannu Lauri ◽  
Matti Kummu ◽  
Jorma Koponen ◽  
Michelle T. H. van Vliet ◽  
...  

Abstract. Climate change poses critical threats to water-related safety and sustainability in the Mekong River basin. Hydrological impact signals from earlier Coupled Model Intercomparison Project phase 3 (CMIP3)-based assessments, however, are highly uncertain and largely ignore hydrological extremes. This paper provides one of the first hydrological impact assessments using the CMIP5 climate projections. Furthermore, we model and analyse changes in river flow regimes and hydrological extremes (i.e. high-flow and low-flow conditions). In general, the Mekong's hydrological cycle intensifies under future climate change. The scenario's ensemble mean shows increases in both seasonal and annual river discharges (annual change between +5 and +16 %, depending on location). Despite the overall increasing trend, the individual scenarios show differences in the magnitude of discharge changes and, to a lesser extent, contrasting directional changes. The scenario's ensemble, however, shows reduced uncertainties in climate projection and hydrological impacts compared to earlier CMIP3-based assessments. We further found that extremely high-flow events increase in both magnitude and frequency. Extremely low flows, on the other hand, are projected to occur less often under climate change. Higher low flows can help reducing dry season water shortage and controlling salinization in the downstream Mekong Delta. However, higher and more frequent peak discharges will exacerbate flood risks in the basin. Climate-change-induced hydrological changes will have important implications for safety, economic development, and ecosystem dynamics and thus require special attention in climate change adaptation and water management.


1996 ◽  
Vol 32 (6) ◽  
pp. 1749-1760 ◽  
Author(s):  
S. Rocky Durrans
Keyword(s):  

Author(s):  
Philipp Epple ◽  
Mihai Miclea ◽  
Harald Schmidt ◽  
Antonio Delgado ◽  
Hans Russwurm

High pressure fans for thermal power generation stations, especially biogas plants, usually operate in a spiral casing at high pressures of about p = 12.000–15.000 Pa and low flow rates of around Q = 100–600 m3/s. The motor drive has a constant speed of 3.000 l/min. This corresponds to specific speeds of nq = 3–6 min−1, which is already beyond the conventional range of single stage radial machines. Nowadays these fans for biogas plants usually operate at higher flow rates than specified or are multiple stage radial fans. Therefore a new class of radial impellers has been developed. These single stage impellers have a unique high pressure at a low flow rate operating point. In this work several impellers of this new class have been designed and validated with a commercial Navier-Stokes solver (ANSYS CFX). The design process is described in detail. It is based on a new extended analytical and numerical design method. It is shown that the prescribed unusual operating point can be achieved with single stage radial impellers. An in detail flow analysis is given showing the fundamental flow physics of these impellers.


Sign in / Sign up

Export Citation Format

Share Document