Combustion characteristics of diesel HCCI engine: An experimental investigation using external mixture formation technique

2012 ◽  
Vol 99 ◽  
pp. 116-125 ◽  
Author(s):  
Akhilendra Pratap Singh ◽  
Avinash Kumar Agarwal
Author(s):  
T. Karthikeya Sharma ◽  
G. Amba Prasad Rao ◽  
Madhu Murthy Kotha

HCCI combustion is gaining increased attention amongst the research community to make it viable in both diesel and gasoline engines. Of late, technique of External mixture formation is being adopted to avoid the problems associated with the early injection and late injections of the direct injected diesel HCCI engine. This paper reports the numerical studies on the effect of External mixture formation using three-zone extended coherent flame (ECFM-3Z) CFD model of the STAR - CD package. Firstly, the results obtained through package were validated with the results available in the literature. Trade-off between HC, CO and NOx was clearly observed through simulation. The simulation results revealed decrease in in-cylinder pressures and NOx emissions with increase in EGR concentration. There is an under prediction of NOx emissions when compared with the experimental results. However, a significant reduction in NOx emissions was observed with external mixture formation, usage compared to direct diesel injection. In case of HC and CO emissions increasing trend was observed with increase in EGR concentration. Increase in HC and CO emissions was observed with external mixture formation when compared with a direct diesel injection. Also, reduction in turbulent kinetic energy and velocity magnitude levels were observed with increase in EGR concentration. Improved piston work is resulted at lower EGR concentrations. Studies revealed that for a given combustion bowl geometry, It is concluded that external mixture formation technique could be adopted to achieve HCCI combustion.


2014 ◽  
Vol 694 ◽  
pp. 54-58
Author(s):  
Ling Zhe Zhang ◽  
Ya Kun Sun ◽  
Su Li ◽  
Qing Ping Zheng

A reduced chemical kinetic model (103species and 468 reactions) for new low-RON(research octane number) gasoline surrogate fuels has been proposed. Simulations explored for ignition delay time have been compared with experimental data in shock tubes at pressure of 10atm-55 atm and temperatue of 600-1400 K (fuel/air equivalence ratio=0.5,1.0,2.0 and EGR rate=0, 20%). The simulation data presented 15% enlargement compared with experiments showed applicability of the new kinetic mode in this work. A combustion simulation model has been build for HCCI(homogeneous charge compression ignition) engine with Chemkin-pro. The effects of different air inlet temperature, inlet pressure, engine speed and the fuel air equivalence ratio on the combustion characteristics of the fuel were researched. The results indicated the combustion in an HCCI engine worked sufficiently with lean mixtures and low speed. Meanwhile the material strength could be influenced when the inlet conditions changed. This helps to promote the low-RON gasoline surrogate fuel application in the HCCI engine.


2007 ◽  
Vol 44 (1/2) ◽  
pp. 62 ◽  
Author(s):  
Marcello Canova ◽  
Shawn Midlam Mohler ◽  
Yann Guezennec ◽  
Giorgio Rizzoni

2013 ◽  
Vol 315 ◽  
pp. 293-298 ◽  
Author(s):  
Amir Khalid ◽  
Bukhari Manshoor

Mixture formation plays as a key element on burning process that strongly affects the exhaust emissions such as nitrogen oxide (NOx) and Particulate Matter (PM). The reductions of emissions can be achieved with improvement throughout the mixing of fuel and air behavior. Measurements were made in an optically-accessible rapid compression machine (RCM) with intended to simulate the actual diesel combustion related phenomena. The diesel combustion was simulated with the RCM which is equipped with the Denso single-shot common-rail fuel injection system, capable of a maximum injection pressure up to 160MPa. Diesel engine compression process could be reproduced within the wide range of ambient temperature, ambient density, swirl velocity, equivalence ratio and fuel injection pressure. The mixture formation and combustion images were captured by the high speed camera. Analysis of combustion characteristics and observations of optical visualization of images reveal that the mixture formation exhibit influences to the ignition process and flame development. Therefore, the examination of the first stage of mixture formation is very important consideration due to the fuel-air premixing process linked with the combustion characteristics. Furthermore, the observation of a systematic control of mixture formation with experimental apparatus enables us to achieve considerable improvements of combustion process and would present the information for fundamental understanding in terms of reduced fuel consumption and exhaust emissions.


Sign in / Sign up

Export Citation Format

Share Document