A Computational Study of HCCI Engine With External Mixture Formation Technique

Author(s):  
T. Karthikeya Sharma ◽  
G. Amba Prasad Rao ◽  
Madhu Murthy Kotha

HCCI combustion is gaining increased attention amongst the research community to make it viable in both diesel and gasoline engines. Of late, technique of External mixture formation is being adopted to avoid the problems associated with the early injection and late injections of the direct injected diesel HCCI engine. This paper reports the numerical studies on the effect of External mixture formation using three-zone extended coherent flame (ECFM-3Z) CFD model of the STAR - CD package. Firstly, the results obtained through package were validated with the results available in the literature. Trade-off between HC, CO and NOx was clearly observed through simulation. The simulation results revealed decrease in in-cylinder pressures and NOx emissions with increase in EGR concentration. There is an under prediction of NOx emissions when compared with the experimental results. However, a significant reduction in NOx emissions was observed with external mixture formation, usage compared to direct diesel injection. In case of HC and CO emissions increasing trend was observed with increase in EGR concentration. Increase in HC and CO emissions was observed with external mixture formation when compared with a direct diesel injection. Also, reduction in turbulent kinetic energy and velocity magnitude levels were observed with increase in EGR concentration. Improved piston work is resulted at lower EGR concentrations. Studies revealed that for a given combustion bowl geometry, It is concluded that external mixture formation technique could be adopted to achieve HCCI combustion.

Author(s):  
Iván D. Bedoya ◽  
Samveg Saxena ◽  
Francisco J. Cadavid ◽  
Robert W. Dibble

This study investigates the effects of biogas composition on combustion stability for a purely biogas fueled homogeneous charge compression ignition (HCCI) engine. Biogas is one of the most promising renewable fuels for combined heat and power systems driven by internal combustion engines. However, the high content of CO2 in biogas composition leads to low thermal efficiencies in spark ignited and dual fuel compression ignited engines. The study is divided into two parts: First experimental results on a biogas-fueled HCCI engine are used to illustrate the effects of intake conditions on combustion stability, and second a simulation methodology is used to investigate how biogas composition impacts combustion stability at constant intake conditions. Experimental analysis of a four cylinder, 1.9 L Volkswagen TDI diesel engine shows that biogas-HCCI combustion exhibits high gross indicated mean effective pressure (close to 8 bar), high gross indicated efficiency (close to 45%), and ultralow NOx emissions below the US2010 limit (0.27 g/kWh). An inlet absolute pressure of 2 bar and inlet temperature of 473 K (200 °C) were required for allowing HCCI combustion with a biogas composition of 60% CH4 and 40% CO2 on a volumetric basis. However, slight changes in inlet pressure and temperature caused large changes in cycle-to-cycle variations at low equivalence ratios and large changes in ringing intensity at high equivalence ratios. Numerical analysis of biogas-HCCI combustion is carried out with a sequential methodology that includes one-zone model simulations, computational fluid dynamics (CFD) analysis, and 12-zones model simulations. Numerical results for varied biogas composition show that at high load limit, higher contents of CH4 in biogas composition allow advanced combustion and increased burning rates of the biogas air mixture. Higher contents of CO2 in biogas composition allow lowered ringing intensities with moderate decrease in the indicated efficiency and power output. NOx emissions are not highly affected by biogas composition, while CO and unburned hydrocarbons (HC) emissions tend to increase with higher contents of CO2. According with the numerical results, biogas composition is an effective strategy to control the onset of combustion and combustion phasing of HCCI engines running biogas, allowing more stabilized combustion at low equivalence ratios and safe operation at high equivalence ratios. The main advantages of using biogas-fueled HCCI engines in CHP systems are the low sensitivity of power output and indicated efficiency to biogas composition, as well as the ultralow NOx emissions achieved for all tested compositions.


2007 ◽  
Vol 44 (1/2) ◽  
pp. 62 ◽  
Author(s):  
Marcello Canova ◽  
Shawn Midlam Mohler ◽  
Yann Guezennec ◽  
Giorgio Rizzoni

Author(s):  
Andrew Rolt ◽  
Victor Martínez Bueno ◽  
Mirko Romanelli ◽  
Xiaoxiao Sun ◽  
Pierre Gauthier ◽  
...  

Abstract Gas turbine thermal efficiency and fuel burn are very dependent on turbine entry temperature and overall pressure ratio (OPR). Unfortunately, increases in these two parameters compromise other key aspects of engine operation and tend to increase emissions of nitrogen oxides (NOx). The European Horizon 2020 ULTIMATE project researched advanced-cycle aero engines with synergistic combinations of novel technologies to increase thermal efficiency without increasing emissions. One candidate technology was the addition of secondary combustion to increase the mean temperature of heat addition to improve thermal efficiency while limiting the primary combustor flame temperatures and NOx formation. However, an overall reduction in NOx also requires the secondary combustor to be a low-NOx design. This paper describes numerical studies carried out on novel aero engine secondary combustor concepts developed in two MSc-thesis research projects. The studies have explored the potential of oxy-poor-flame combustion concepts. These annular combustor designs featured two distinct regions: (i) the vortex zone, which promotes recirculation of combustion products, a prerequisite for low-oxygen combustion, and (ii) a through-flow region where part of the incoming flow bypasses the vortex before the flows mix again. These studies have demonstrated the advantages and some limitations of the proposed designs and emissions assessments in comparison with previous secondary combustor studies. They suggest very low NOx is achievable with oxy-poor combustion, but will be more difficult if the incoming oxygen levels are above 10%. More-accurate assessments will require LES modelling and inclusion of the primary combustor in the simulations. However, if the low overall NOx emissions would include relatively higher levels of nitrous oxide (N2O) then this might raise concerns with respect to global warming.


Author(s):  
C. Stuart Daw ◽  
K. Dean Edwards ◽  
Robert M. Wagner ◽  
Johney B. Green

Spark assist appears to offer considerable potential for increasing the speed and load range over which homogeneous charge compression ignition (HCCI) is possible in gasoline engines. Numerous experimental studies of the transition between conventional spark-ignited (SI) propagating-flame combustion and HCCI combustion in gasoline engines with spark assist have demonstrated a high degree of deterministic coupling between successive combustion events. Analysis of this coupling suggests that the transition between SI and HCCI can be described as a sequence of bifurcations in a low-dimensional dynamic map. In this paper, we describe methods for utilizing the deterministic relationship between cycles to extract global kinetic rate parameters that can be used to discriminate multiple distinct combustion states and develop a more quantitative understanding of the SI-HCCI transition. We demonstrate the application of these methods for indolene-containing fuels and point out an apparent HCCI mode switching not previously reported. Our results have specific implications for developing dynamic combustion models and feedback control strategies that utilize spark assist to expand the operating range of HCCI combustion.


Energy ◽  
2019 ◽  
Vol 181 ◽  
pp. 250-263 ◽  
Author(s):  
Junrui Shi ◽  
Yongqi Liu ◽  
Mingming Mao ◽  
Jinsheng Lv ◽  
Youtang Wang ◽  
...  

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
K. K. Srinivasan ◽  
S. R. Krishnan ◽  
Y. Qi

Dual fuel pilot-ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed combustion (PPC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90% relative to neat diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel PPC is achieved by appropriately timed injection of a small amount of diesel fuel (2–3% on an energy basis) to ignite a premixed natural gas–air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed “relative combustion phasing”). For conventional dual fueling, as NG substitution increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel PPC, as diesel injection timing is advanced from 20 deg to 60 deg BTDC, Pmax is observed to increase and reach a maximum at 40 deg BTDC and then decrease with further pilot injection advance to 60 deg BTDC, the Ca50 is progressively phased closer to TDC with injection advance from 20 deg to 40 deg BTDC, and is then retarded away from TDC with further injection advance to 60 deg BTDC. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high NG substitutions and advanced injection timings. Finally, heat release return maps were analyzed to demonstrate thermal management strategies as an effective tool to mitigate cyclic combustion variations, especially in dual fuel PPC.


Sign in / Sign up

Export Citation Format

Share Document