Economic evaluation of a novel fuel-saver hybrid combining a solar receiver with a combustor for a solar power tower

2014 ◽  
Vol 113 ◽  
pp. 1235-1243 ◽  
Author(s):  
G.J. Nathan ◽  
D.L. Battye ◽  
P.J. Ashman
Author(s):  
Raffaele Capuano ◽  
Thomas Fend ◽  
Bernhard Hoffschmidt ◽  
Robert Pitz-Paal

Due to the continuous global increase in energy demand, Concentrated Solar Power (CSP) represents an excellent alternative, or add-on to existing systems for the production of energy on a large scale. In some of these systems, the Solar Power Tower plants (SPT), the conversion of solar radiation into heat occurs in certain components defined as solar receivers, placed in correspondence of the focus of the reflected sunlight. In a particular type of solar receivers, defined as volumetric, the use of porous materials is foreseen. These receivers are characterized by a porous structure called absorber. The latter, hit by the reflected solar radiation, transfers the heat to the evolving fluid, generally air subject to natural convection. The proper design of these elements is essential in order to achieve high efficiencies, making such structures extremely beneficial for the overall performances of the energy production process. In the following study, a parametric analysis and an optimized characterization of the structure have been performed with the use of self-developed numerical models. The knowledge and results gained through this study have been used to define an optimization path in order to improve the absorber microstructure, starting from the current in-house state-of-the-art technology until obtaining a new advanced geometry.


Author(s):  
Jesus D. Ortega ◽  
Sagar D. Khivsara ◽  
Joshua M. Christian ◽  
Julius E. Yellowhair ◽  
Clifford K. Ho

Recent studies have evaluated closed-loop supercritical carbon dioxide (s-CO2) Brayton cycles to be a higher energy-density system in comparison to conventional superheated steam Rankine systems. At turbine inlet conditions of 923K and 25 MPa, high thermal efficiency (∼50%) can be achieved. Achieving these high efficiencies will make concentrating solar power (CSP) technologies a competitive alternative to current power generation methods. To incorporate a s-CO2 Brayton power cycle in a solar power tower system, the development of a solar receiver capable of providing an outlet temperature of 923 K (at 25 MPa) is necessary. The s-CO2 will need to increase in temperature by ∼200 K as it passes through the solar receiver to satisfy the temperature requirements of a s-CO2 Brayton cycle with recuperation and recompression. In this study, an optical-thermal-fluid model was developed to design and evaluate a tubular receiver that will receive a heat input ∼2 MWth from a heliostat field. The ray-tracing tool SolTrace was used to obtain the heat-flux distribution on the surfaces of the receiver. Computational fluid dynamics (CFD) modeling using the Discrete Ordinates (DO) radiation model was used to predict the temperature distribution and the resulting receiver efficiency. The effect of flow parameters, receiver geometry and radiation absorption by s-CO2 were studied. The receiver surface temperatures were found to be within the safe operational limit while exhibiting a receiver efficiency of ∼85%.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
I. Hischier ◽  
P. Poživil ◽  
A. Steinfeld

The optical design and thermal performance of a solar power tower system using an array of high-temperature pressurized air-based solar receivers is analyzed for Brayton, recuperated, and combined Brayton–Rankine cycles. A 50 MWe power tower system comprising a cluster of 500 solar receiver modules, each attached to a hexagon-shaped secondary concentrator and arranged side-by-side in a honeycomb-type structure following a spherical fly-eye optical configuration, can yield a peak solar-to-electricity efficiency of 37%.


2016 ◽  
Vol 826 ◽  
pp. 50-54
Author(s):  
Nidal H. Abu-Hamdeh ◽  
Khaled A. Alnefaie

In this paper it is aimed to present the detailed design procedure of the first solar power system in Jeddah. A prototype of solar power tower system was built at King Abdulaziz University in Jeddah, Saudi Arabia where direct irradiation is very high. Heliostats were used to track the incident sun rays and focus the energy flow towards a solar receiver. The system consists of 10 heliostats directing incident solar rays to a tower of height about 7 meters. Two motors were used to control the heliostat rotational and elevation movements. A solar receiver made of alloy steel is installed at the top of the tower to collect solar energy reflected from the heliostats. A molten salt fluid consists of sodium and potassium nitrates (60/40) re-circulated in the receiver transfers the collected heat in the receiver to a storage tank. A cylindrical vessel with height of 1 m and diameter of 1.5 m was adopted for each of the cold and hot tanks. The design thermal power was 13 kW. The percentage error in the thermal power obtained is about 5.3%.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Zhifeng Wang ◽  
Xin Li ◽  
Zhihao Yao ◽  
Meimei Zhang

Research on concentrating solar power (CSP) technologies began in 1979 in China. With pressure on environmental and energy resources, the CSP technology development has been accelerating since 2003. After 30 years of development, China has made significant progress on solar absorbing materials, solar thermal-electrical conversion materials, solar energy storage materials, solar concentrator equipments, evacuated tube solar trough collectors, solar thermal receivers, solar dish-Stirling systems, solar high-temperature air power generations, and solar power tower system designs. A 1 MW solar tower plant demonstration project landmark is currently being built in Beijing, to be completed by 2010 with a maximum temperature of 390°C and pressure of 2.35 MPa.


Sign in / Sign up

Export Citation Format

Share Document