Innovative Volumetric Solar Receiver Micro-Design Based on Numerical Predictions

Author(s):  
Raffaele Capuano ◽  
Thomas Fend ◽  
Bernhard Hoffschmidt ◽  
Robert Pitz-Paal

Due to the continuous global increase in energy demand, Concentrated Solar Power (CSP) represents an excellent alternative, or add-on to existing systems for the production of energy on a large scale. In some of these systems, the Solar Power Tower plants (SPT), the conversion of solar radiation into heat occurs in certain components defined as solar receivers, placed in correspondence of the focus of the reflected sunlight. In a particular type of solar receivers, defined as volumetric, the use of porous materials is foreseen. These receivers are characterized by a porous structure called absorber. The latter, hit by the reflected solar radiation, transfers the heat to the evolving fluid, generally air subject to natural convection. The proper design of these elements is essential in order to achieve high efficiencies, making such structures extremely beneficial for the overall performances of the energy production process. In the following study, a parametric analysis and an optimized characterization of the structure have been performed with the use of self-developed numerical models. The knowledge and results gained through this study have been used to define an optimization path in order to improve the absorber microstructure, starting from the current in-house state-of-the-art technology until obtaining a new advanced geometry.

2019 ◽  
Vol 11 (23) ◽  
pp. 6647 ◽  
Author(s):  
Suntiti Yoomak ◽  
Theerasak Patcharoen ◽  
Atthapol Ngaopitakkul

Solar rooftop systems in the residential sector have been rapidly increased in the term of installed capacity. There are various factors, such as climate, temperature, and solar radiation, that have effects on solar power generation efficiency. This paper presents a performance assessment of a solar system installed on the rooftop of residence in different regions of Thailand by using PSIM simulation. Solar rooftop installation comparison in different regions is carried out to evaluate the suitable location. In addition, three types of solar panels are used in research: monocrystalline, polycrystalline, and thin-film. The electrical parameters of real power and energy generated from the systems are investigated and analyzed. Furthermore, the economic evaluation of different solar rooftop system sizes using the monocrystalline module is investigated by using economic indicators of discounted payback period (DPP), net present value (NPV), internal rate of return (IRR), and profitability index (PI). Results show that the central region of Thailand is a suitable place for installing solar rooftop in terms of solar radiation, and the temperature has more solar power generation capacity than the other regions. The monocrystalline and polycrystalline solar panels can generate maximum power close to each other. All solar rooftop sizes with the Feed-in Tariff (FiT) scheme give the same DPP of 6.1 years, IRR of 15%, and PI of 2.57 which are better than the cases without the FiT scheme. However, a large-scale installation of solar rooftop systems can receive more electrical energy produced from the solar rooftop systems. As a result, the larger solar rooftop system sizes can achieve better economic satisfaction.


Solar Energy ◽  
2005 ◽  
Author(s):  
Gregory J. Kolb ◽  
Richard B. Diver ◽  
Nathan Siegel

Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via a thermochemical process. In the research summarized here, the marriage of a high-temperature (∼1000 °C) power tower with a sulfuric acid/hybrid thermochemical cycle (SAHT) was studied. The concept combines a solar power tower, a solid-particle receiver, a particle thermal energy storage system, and a hybrid-sulfuric-acid cycle. The cycle is “hybrid” because it produces hydrogen with a combination of thermal input and an electrolyzer. This solar thermochemical plant is predicted to produce hydrogen at a much lower cost than a solar-electrolyzer plant of similar size. To date, only small lab-scale tests have been conducted to demonstrate the feasibility of a few of the subsystems and a key immediate issue is demonstration of flow stability within the solid-particle receiver. The paper describes the systems analysis that led to the favorable economic conclusions and discusses the future development path.


2006 ◽  
Vol 129 (2) ◽  
pp. 179-183 ◽  
Author(s):  
Gregory J. Kolb ◽  
Richard B. Diver ◽  
Nathan Siegel

Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via a thermochemical process. In the research summarized here, the marriage of a high-temperature (∼1000°C) power tower with a sulfuric acid∕hybrid thermochemical cycle was studied. The concept combines a solar power tower, a solid-particle receiver, a particle thermal energy storage system, and a hybrid-sulfuric-acid cycle. The cycle is “hybrid” because it produces hydrogen with a combination of thermal input and an electrolyzer. This solar thermochemical plant is predicted to produce hydrogen at a much lower cost than a solar-electrolyzer plant of similar size. To date, only small lab-scale tests have been conducted to demonstrate the feasibility of a few of the subsystems and a key immediate issue is demonstration of flow stability within the solid-particle receiver. The paper describes the systems analysis that led to the favorable economic conclusions and discusses the future development path.


2021 ◽  
Vol 3 (10) ◽  
Author(s):  
Patrick T. Brown ◽  
David J. Farnham ◽  
Ken Caldeira

AbstractWind and solar electricity generation is projected to expand substantially over the next several decades due both to rapid cost declines as well as regulation designed to achieve climate targets. With increasing reliance on wind and solar generation, future energy systems may be vulnerable to previously underappreciated synoptic-scale variations characterized by low wind and/or surface solar radiation. Here we use western North America as a case study region to investigate the historical meteorology of weekly-scale “droughts” in potential wind power, potential solar power and their compound occurrence. We also investigate the covariability between wind and solar droughts with potential stresses on energy demand due to temperature deviations away human comfort levels. We find that wind power drought weeks tend to occur in late summer and are characterized by a mid-level atmospheric ridge centered over British Columbia and high sea level pressure on the lee side of the Rockies. Solar power drought weeks tend to occur near winter solstice when the seasonal minimum in incoming solar radiation co-occurs with the tendency for mid-level troughs and low pressure systems over the U.S. southwest. Compound wind and solar power drought weeks consist of the aforementioned synoptic pattern associated with wind droughts occurring near winter solstice when the solar resource is at its seasonal minimum. We find that wind drought weeks are associated with high solar power (and vice versa) both seasonally and in terms of synoptic meteorology, which supports the notion that wind and solar power generation can play complementary roles in a diversified energy portfolio at synoptic spatiotemporal scales over western North America.


2021 ◽  
Author(s):  
Patrick T Brown ◽  
David J. Farnham ◽  
Ken Caldeira

Abstract Wind and solar electricity generation is projected to expand substantially over the next several decades due both to rapid cost declines as well as regulation designed to achieve climate targets. With increasing reliance on wind and solar generation, future energy systems may be vulnerable to previously underappreciated synoptic-scale variations characterized by low wind and/or surface solar radiation. Here we use western North America as a case study region to investigate the historical meteorology of weekly-scale “droughts” in potential wind power, potential solar power and their compound occurrence. We also investigate the covariability between wind and solar droughts with potential stresses on energy demand due to temperature deviations away human comfort levels. We find that wind power drought weeks tend to occur in late summer and are characterized by a mid-level atmospheric ridge centered over British Columbia and high sea level pressure on the lee side of the Rockies. Solar power drought weeks tend to occur near winter solstice when the seasonal minimum in incoming solar radiation co-occurs with the tendency for mid-level troughs and low pressure systems over the U.S. southwest. Compound wind and solar power drought weeks consist of the aforementioned synoptic pattern associated with wind droughts occurring near winter solstice when the solar resource is at its seasonal minimum. We find that wind drought weeks are associated with high solar power (and vice versa) both seasonally and in terms of synoptic meteorology, which supports the notion that wind and solar power generation can play complementary roles in a diversified energy portfolio at synoptic spatiotemporal scales over Western North America.


Author(s):  
Gregory J. Kolb ◽  
Roger Davenport ◽  
David Gorman ◽  
Ron Lumia ◽  
Robert Thomas ◽  
...  

Power towers are capable of producing solar-generated electricity and hydrogen on a large scale. Heliostats are the most important cost element of a solar power tower plant. Since they constitute ∼50% to the capital cost of the plant it is important to reduce the cost of heliostats to as low as possible to improve the economic viability of power towers. In this study we evaluate current heliostat technology and estimate a price of $126/m2 given year 2006 materials and labor costs. We also propose R&D that should ultimately lead to a price of less than $100/m2. Approximately 30 heliostat and manufacturing experts from the USA, Europe, and Australia contributed to the content of this report during 2 workshops conducted at the National Solar Thermal Test Facility.


2020 ◽  
Vol 11 (1) ◽  
pp. 316
Author(s):  
Namrye Son ◽  
Mina Jung

Solar power generation is an increasingly popular renewable energy topic. Photovoltaic (PV) systems are installed on buildings to efficiently manage energy production and consumption. Because of its physical properties, electrical energy is produced and consumed simultaneously; therefore solar energy must be predicted accurately to maintain a stable power supply. To develop an efficient energy management system (EMS), 22 multivariate numerical models were constructed by combining solar radiation, sunlight, humidity, temperature, cloud cover, and wind speed. The performance of the models was compared by applying a modified version of the traditional long short-term memory (LSTM) approach. The experimental results showed that the six meteorological factors influence the solar power forecast regardless of the season. These are, from most to least important: solar radiation, sunlight, wind speed, temperature, cloud cover, and humidity. The models are rated for suitability to provide medium- and long-term solar power forecasts, and the modified LSTM demonstrates better performance than the traditional LSTM.


Author(s):  
Jesus D. Ortega ◽  
Sagar D. Khivsara ◽  
Joshua M. Christian ◽  
Julius E. Yellowhair ◽  
Clifford K. Ho

Recent studies have evaluated closed-loop supercritical carbon dioxide (s-CO2) Brayton cycles to be a higher energy-density system in comparison to conventional superheated steam Rankine systems. At turbine inlet conditions of 923K and 25 MPa, high thermal efficiency (∼50%) can be achieved. Achieving these high efficiencies will make concentrating solar power (CSP) technologies a competitive alternative to current power generation methods. To incorporate a s-CO2 Brayton power cycle in a solar power tower system, the development of a solar receiver capable of providing an outlet temperature of 923 K (at 25 MPa) is necessary. The s-CO2 will need to increase in temperature by ∼200 K as it passes through the solar receiver to satisfy the temperature requirements of a s-CO2 Brayton cycle with recuperation and recompression. In this study, an optical-thermal-fluid model was developed to design and evaluate a tubular receiver that will receive a heat input ∼2 MWth from a heliostat field. The ray-tracing tool SolTrace was used to obtain the heat-flux distribution on the surfaces of the receiver. Computational fluid dynamics (CFD) modeling using the Discrete Ordinates (DO) radiation model was used to predict the temperature distribution and the resulting receiver efficiency. The effect of flow parameters, receiver geometry and radiation absorption by s-CO2 were studied. The receiver surface temperatures were found to be within the safe operational limit while exhibiting a receiver efficiency of ∼85%.


Sign in / Sign up

Export Citation Format

Share Document