scholarly journals Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network

2021 ◽  
Vol 282 ◽  
pp. 116177
Author(s):  
Mohammad Navid Fekri ◽  
Harsh Patel ◽  
Katarina Grolinger ◽  
Vinay Sharma
Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4953
Author(s):  
Sara Al-Emadi ◽  
Abdulla Al-Ali ◽  
Abdulaziz Al-Ali

Drones are becoming increasingly popular not only for recreational purposes but in day-to-day applications in engineering, medicine, logistics, security and others. In addition to their useful applications, an alarming concern in regard to the physical infrastructure security, safety and privacy has arisen due to the potential of their use in malicious activities. To address this problem, we propose a novel solution that automates the drone detection and identification processes using a drone’s acoustic features with different deep learning algorithms. However, the lack of acoustic drone datasets hinders the ability to implement an effective solution. In this paper, we aim to fill this gap by introducing a hybrid drone acoustic dataset composed of recorded drone audio clips and artificially generated drone audio samples using a state-of-the-art deep learning technique known as the Generative Adversarial Network. Furthermore, we examine the effectiveness of using drone audio with different deep learning algorithms, namely, the Convolutional Neural Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone detection and identification. Moreover, we investigate the impact of our proposed hybrid dataset in drone detection. Our findings prove the advantage of using deep learning techniques for drone detection and identification while confirming our hypothesis on the benefits of using the Generative Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection of new and unfamiliar drones.


Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 81
Author(s):  
Jianbin Xiong ◽  
Dezheng Yu ◽  
Shuangyin Liu ◽  
Lei Shu ◽  
Xiaochan Wang ◽  
...  

Plant phenotypic image recognition (PPIR) is an important branch of smart agriculture. In recent years, deep learning has achieved significant breakthroughs in image recognition. Consequently, PPIR technology that is based on deep learning is becoming increasingly popular. First, this paper introduces the development and application of PPIR technology, followed by its classification and analysis. Second, it presents the theory of four types of deep learning methods and their applications in PPIR. These methods include the convolutional neural network, deep belief network, recurrent neural network, and stacked autoencoder, and they are applied to identify plant species, diagnose plant diseases, etc. Finally, the difficulties and challenges of deep learning in PPIR are discussed.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 931
Author(s):  
Kecheng Peng ◽  
Xiaoqun Cao ◽  
Bainian Liu ◽  
Yanan Guo ◽  
Wenlong Tian

The intensity variation of the South Asian high (SAH) plays an important role in the formation and extinction of many kinds of mesoscale systems, including tropical cyclones, southwest vortices in the Asian summer monsoon (ASM) region, and the precipitation in the whole Asia Europe region, and the SAH has a vortex symmetrical structure; its dynamic field also has the symmetry form. Not enough previous studies focus on the variation of SAH daily intensity. The purpose of this study is to establish a day-to-day prediction model of the SAH intensity, which can accurately predict not only the interannual variation but also the day-to-day variation of the SAH. Focusing on the summer period when the SAH is the strongest, this paper selects the geopotential height data between 1948 and 2020 from NCEP to construct the SAH intensity datasets. Compared with the classical deep learning methods of various kinds of efficient time series prediction model, we ultimately combine the Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) method, which has the ability to deal with the nonlinear and unstable single system, with the Permutation Entropy (PE) method, which can extract the SAH intensity feature of IMF decomposed by CEEMDAN, and the Convolution-based Gated Recurrent Neural Network (ConvGRU) model is used to train, test, and predict the intensity of the SAH. The prediction results show that the combination of CEEMDAN and ConvGRU can have a higher accuracy and more stable prediction ability than the traditional deep learning model. After removing the redundant features in the time series, the prediction accuracy of the SAH intensity is higher than that of the classical model, which proves that the method has good applicability for the prediction of nonlinear systems in the atmosphere.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6460
Author(s):  
Dae-Yeon Kim ◽  
Dong-Sik Choi ◽  
Jaeyun Kim ◽  
Sung Wan Chun ◽  
Hyo-Wook Gil ◽  
...  

In this study, we propose a personalized glucose prediction model using deep learning for hospitalized patients who experience Type-2 diabetes. We aim for our model to assist the medical personnel who check the blood glucose and control the amount of insulin doses. Herein, we employed a deep learning algorithm, especially a recurrent neural network (RNN), that consists of a sequence processing layer and a classification layer for the glucose prediction. We tested a simple RNN, gated recurrent unit (GRU), and long-short term memory (LSTM) and varied the architectures to determine the one with the best performance. For that, we collected data for a week using a continuous glucose monitoring device. Type-2 inpatients are usually experiencing bad health conditions and have a high variability of glucose level. However, there are few studies on the Type-2 glucose prediction model while many studies performed on Type-1 glucose prediction. This work has a contribution in that the proposed model exhibits a comparative performance to previous works on Type-1 patients. For 20 in-hospital patients, we achieved an average root mean squared error (RMSE) of 21.5 and an Mean absolute percentage error (MAPE) of 11.1%. The GRU with a single RNN layer and two dense layers was found to be sufficient to predict the glucose level. Moreover, to build a personalized model, at most, 50% of data are required for training.


Sign in / Sign up

Export Citation Format

Share Document