Poster 84 Investigating the Impact of Depression on Self-reported Executive Function In Individuals With Traumatic Brain Injury

2013 ◽  
Vol 94 (10) ◽  
pp. e40
Author(s):  
Pey-Shan Wen ◽  
J. Kay Waid-Ebbs ◽  
Craig Velozo
2013 ◽  
Vol 19 (2) ◽  
pp. 181-188 ◽  
Author(s):  
Rodger Ll. Wood ◽  
Louise McHugh

AbstractA temporal discounting paradigm was used to examine decision making for hypothetical monetary reward following traumatic brain injury (TBI). A case-control design compared individuals following moderate or severe TBI with a healthy control group matched for age and gender. The impact of intelligence, impulsivity, and mood on temporal discounting performance was examined. A within-subjects design for the TBI group determined the influence of a range of neuropsychological tests on temporal discounting performance. Both patients and controls demonstrated temporal discounting. However, the TBI group discounted more than controls, suggesting that their decision making was more impulsive, consistent with ratings on the impulsiveness questionnaire. Discounting performance was independent of neuropsychological measures of intelligence, memory, and executive function. There was no relationship between temporal discounting and ratings of everyday executive function made by patients' relatives. Low mood did not account for discounting performance. The results of this study suggest that temporal discounting may be a useful neuropsychological paradigm to assess decision making linked to monetary reward following TBI. Performance was relatively independent of intelligence, memory and standard tests of executive ability and may therefore assist when assessing a patient's mental capacity to manage their financial affairs. (JINS, 2013,19, 1–8)


2021 ◽  
pp. jnnp-2020-325066
Author(s):  
Mark Sen Liang Goh ◽  
Dawn Shu Hui Looi ◽  
Jia Ling Goh ◽  
Rehena Sultana ◽  
Sharon Si Min Goh ◽  
...  

ObjectiveTo assess the burden of paediatric traumatic brain injury (TBI) on neurocognition via a systematic review and meta-analysis.MethodsStudies that compared neurocognitive outcomes of paediatric patients with TBI and controls were searched using Medline, Embase, PsycINFO and Cochrane Central Register of Controlled Trials, between January 1988 and August 2019. We presented a random-effects model, stratified by TBI severity, time of assessment post injury and age.ResultsOf 5919 studies, 41 (patients=3717) and 33 (patients=3118) studies were included for the systematic review and meta-analysis, respectively. Studies mostly measured mild TBI (n=26, patients=2888) at 0–3 months postinjury (n=17, patients=2502). At 0–3 months postinjury, standardised mean differences between TBI and controls for executive function were −0.04 (95% CI −0.14 to 0.07; I2=0.00%), −0.18 (95% CI −0.29 to –0.06; I2=26.1%) and −0.95 (95% CI −1.12 to –0.77; I2=10.1%) for mild, moderate and severe TBI, respectively; a similar effect was demonstrated for learning and memory. Severe TBI had the worst outcomes across all domains and persisted >24 months postinjury. Commonly used domains differed largely from workgroup recommendations. Risk of bias was acceptable for all included studies.ConclusionA dose-dependent relationship between TBI severity and neurocognitive outcomes was evident in executive function and in learning and memory. Cognitive deficits were present for TBIs of all severity but persisted among children with severe TBI. The heterogeneity of neurocognitive scales makes direct comparison between studies difficult. Future research into lesser explored domains and a more detailed assessment of neurocognitive deficits in young children are required to better understand the true burden of paediatric TBI.


2010 ◽  
Vol 17 (2) ◽  
pp. 230-237 ◽  
Author(s):  
Carrie-Ann H. Strong ◽  
David Tiesma ◽  
Jacobus Donders

AbstractThe performance of 65 patients with complicated mild–severe traumatic brain injury was evaluated on the Verbal and Design Fluency subtests of the Delis-Kaplan Executive Function System (D-KEFS), and compared with that of 65 demographically matched healthy controls. There were statistically significant group differences on Letter Fluency and Category Switching but not on any of the Design Fluency tasks. Combined, these two Verbal Fluency subtests had a classification accuracy of 65.39%, associated with a likelihood ratio of 1.87. The impact of length of coma on Letter Fluency performance but not Category Switching was mediated at least in part by processing speed. The findings suggest modest criterion validity of some of the D–KEFS Verbal Fluency subtests in the assessment of patients with complicated mild–severe traumatic brain injury. (JINS, 2011, 17, 230–237)


Author(s):  
Fleur Lorton ◽  
Jeanne Simon-Pimmel ◽  
Damien Masson ◽  
Elise Launay ◽  
Christèle Gras-Le Guen ◽  
...  

AbstractObjectivesTo evaluate the impact of implementing a modified Pediatric Emergency Care Applied Research Network (PECARN) rule including the S100B protein assay for managing mild traumatic brain injury (mTBI) in children.MethodsA before-and-after study was conducted in a paediatric emergency department of a French University Hospital from 2013 to 2015. We retrospectively included all consecutive children aged 4 months to 15 years who presented mTBI and were at intermediate risk for clinically important traumatic brain injury (ciTBI). We compared the proportions of CT scans performed and of in-hospital observations before (2013–2014) and after (2014–2015) implementation of a modified PECARN rule including the S100B protein assay.ResultsWe included 1,062 children with mTBI (median age 4.5 years, sex ratio [F/M] 0.73) who were at intermediate risk for ciTBI: 494 (46.5%) during 2013–2014 and 568 (53.5%) during 2014–2015. During 2014–2015, S100B protein was measured in 451 (79.4%) children within 6 h after mTBI. The proportion of CT scans and in-hospital observations significantly decreased between the two periods, from 14.4 to 9.5% (p=0.02) and 73.9–40.5% (p<0.01), respectively. The number of CT scans performed to identify a single ciTBI was reduced by two-thirds, from 18 to 6 CT scans, between 2013–2014 and 2014–2015. All children with ciTBI were identified by the rules.ConclusionsThe implementation of a modified PECARN rule including the S100B protein assay significantly decreased the proportion of CT scans and in-hospital observations for children with mTBI who were at intermediate risk for ciTBI.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Lauren Alexis De Crescenzo ◽  
Barbara Alison Gabella ◽  
Jewell Johnson

Abstract Background The transition in 2015 to the Tenth Revision of the International Classification of Disease, Clinical Modification (ICD-10-CM) in the US led the Centers for Disease Control and Prevention (CDC) to propose a surveillance definition of traumatic brain injury (TBI) utilizing ICD-10-CM codes. The CDC’s proposed surveillance definition excludes “unspecified injury of the head,” previously included in the ICD-9-CM TBI surveillance definition. The study purpose was to evaluate the impact of the TBI surveillance definition change on monthly rates of TBI-related emergency department (ED) visits in Colorado from 2012 to 2017. Results The monthly rate of TBI-related ED visits was 55.6 visits per 100,000 persons in January 2012. This rate in the transition month to ICD-10-CM (October 2015) decreased by 41 visits per 100,000 persons (p-value < 0.0001), compared to September 2015, and remained low through December 2017, due to the exclusion of “unspecified injury of head” (ICD-10-CM code S09.90) in the proposed TBI definition. The average increase in the rate was 0.33 visits per month (p < 0.01) prior to October 2015, and 0.04 visits after. When S09.90 was included in the model, the monthly TBI rate in Colorado remained smooth from ICD-9-CM to ICD-10-CM and the transition was no longer significant (p = 0.97). Conclusion The reduction in the monthly TBI-related ED visit rate resulted from the CDC TBI surveillance definition excluding unspecified head injury, not necessarily the coding transition itself. Public health practitioners should be aware that the definition change could lead to a drastic reduction in the magnitude and trend of TBI-related ED visits, which could affect decisions regarding the allocation of TBI resources. This study highlights a challenge in creating a standardized set of TBI ICD-10-CM codes for public health surveillance that provides comparable yet clinically relevant estimates that span the ICD transition.


2015 ◽  
Vol 105 ◽  
pp. 20-28 ◽  
Author(s):  
Linda Isaac ◽  
Keith L. Main ◽  
Salil Soman ◽  
Ian H. Gotlib ◽  
Ansgar J. Furst ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document