scholarly journals A two-dimensional analytical model of vertical water entry for asymmetric bodies with flow separation

2019 ◽  
Vol 92 ◽  
pp. 101878 ◽  
Author(s):  
Romain Hascoët ◽  
Nicolas Jacques ◽  
Yves-Marie Scolan ◽  
Alan Tassin
2011 ◽  
Vol 138-139 ◽  
pp. 376-381 ◽  
Author(s):  
Yun Bo Li ◽  
Ya Jun Li ◽  
Yan Wang

The water entry of two-dimensional body with flow separation is simulated based on potential theory and boundary element method. The double point model and four-order Runge-Kutta method and jet-cut model and free surface smooth technique and regrinding technique are used to assure the stability and accuracy of the numerical result. A flow separation model is introduced to simulate the water entry of two-dimensional body with knuckle. The free surface elevation and pressure distribution of wedge with knuckle are predicted and compared with other theory result. Good agreement between numerical result and other theory result is indicated that the numerical method is stability and effective.


2018 ◽  
Vol 114 ◽  
pp. 62-74 ◽  
Author(s):  
R. Ranjith ◽  
Remya Jayachandran ◽  
K.J. Suja ◽  
Rama S. Komaragiri

1996 ◽  
Vol 39 (8) ◽  
pp. 1221-1229 ◽  
Author(s):  
S. Bellone ◽  
N. Rinaldi ◽  
G.F. Vitale ◽  
G. Cocorullo ◽  
G. Schweeger ◽  
...  

2018 ◽  
Vol 29 (9) ◽  
pp. 2008-2026 ◽  
Author(s):  
Andres E Rivero ◽  
Paul M Weaver ◽  
Jonathan E Cooper ◽  
Benjamin KS Woods

Camber morphing aerofoils have the potential to significantly improve the efficiency of fixed and rotary wing aircraft by providing significant lift control authority to a wing, at a lower drag penalty than traditional plain flaps. A rapid, mesh-independent and two-dimensional analytical model of the fish bone active camber concept is presented. Existing structural models of this concept are one-dimensional and isotropic and therefore unable to capture either material anisotropy or spanwise variations in loading/deformation. The proposed model addresses these shortcomings by being able to analyse composite laminates and solve for static two-dimensional displacement fields. Kirchhoff–Love plate theory, along with the Rayleigh–Ritz method, are used to capture the complex and variable stiffness nature of the fish bone active camber concept in a single system of linear equations. Results show errors between 0.5% and 8% for static deflections under representative uniform pressure loadings and applied actuation moments (except when transverse shear exists), compared to finite element method. The robustness, mesh-independence and analytical nature of this model, combined with a modular, parameter-driven geometry definition, facilitate a fast and automated analysis of a wide range of fish bone active camber concept configurations. This analytical model is therefore a powerful tool for use in trade studies, fluid–structure interaction and design optimisation.


Sign in / Sign up

Export Citation Format

Share Document