Chloride salt sorption flux of cohesive sediment beds with different degrees of fluidization in quiescent water

2021 ◽  
pp. 102933
Author(s):  
Jing Yuan ◽  
Binghui Zheng ◽  
Rui Wang ◽  
Minxi Zhang ◽  
Guoliang Yu
2019 ◽  
Author(s):  
Jisue Moon ◽  
Carter Abney ◽  
Dmitriy Dolzhnikov ◽  
James M. Kurley ◽  
Kevin A. Beyer ◽  
...  

The local structure of dilute CrCl<sub>3</sub> in a molten MgCl<sub>2</sub>:KCl salt was investigated by <i>in situ</i> x-ray absorption spectroscopy (XAS) at temperatures from room temperature to 800<sup>o</sup>C. This constitutes the first experiment where dilute Cr speciation is explored in a molten chloride salt, ostensibly due to the compounding challenges arising from a low Cr concentration in a matrix of heavy absorbers at extreme temperatures. CrCl<sub>3</sub> was confirmed to be the stable species between 200 and 500<sup>o</sup>C, while mobility of metal ions at higher temperature (>700<sup>o</sup>C) prevented confirmation of the local structure.


Author(s):  
Changlu ZHOU ◽  
Akihide TADA ◽  
Shinichiro YANO ◽  
Akito MATSUYAMA ◽  
Changping CHEN

Author(s):  
Zuhair AlYousef ◽  
Subhash Ayirala ◽  
Majed Almubarak ◽  
Dongkyu Cha

AbstractGenerating strong and stable foam is necessary to achieve in-depth conformance control in the reservoir. Besides other parameters, the chemistry of injection water can significantly impact foam generation and stabilization. The tailored water chemistry was found to have good potential to improve foam stability. The objective of this study is to extensively evaluate the effect of different aqueous ions in the selected tailored water chemistry formulations on foam stabilization. Bulk and dynamic foam experiments were used to evaluate the impact of different tailored water chemistry aqueous ions on foam generation and stabilization. For bulk foam tests, the stability of foams generated using three surfactants and different aqueous ions was analyzed using bottle tests. For dynamic foam experiments, the tests were conducted using a microfluidic device. The results clearly demonstrated that the ionic content of aqueous solutions can significantly affect foam stabilization. The results revealed that the foam stabilization in bulk is different than that in porous media. Depending on the surfactant type, the divalent ions were found to have stronger influence on foam stabilization when compared to monovalent ions. The bulk foam results pointed out that the aqueous solutions containing calcium chloride salt (CaCl2) showed longer foam life with the anionic surfactant and very weak foam with the nonionic surfactant. The solutions with magnesium chloride (MgCl2) and CaCl2 salts displayed higher impact on foam stability in comparison with sodium chloride (NaCl) with the amphoteric alkyl amine surfactant. Less stable foams were generated with aqueous solutions comprising of both magnesium and calcium ions. In the microfluidic model, the solutions containing MgCl2 showed higher resistance to gas flow and subsequently higher mobility reduction factor for the injection gas when compared to those produced using NaCl and CaCl2 salts. This experimental study focusing about the role of different aqueous ions in the injection water on foam could help in better understanding the foam stabilization process. The new knowledge gained can also enable the selection and optimization of the right injection water chemistry and suitable chemicals for foam field applications.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 119
Author(s):  
Jamal Lasri ◽  
Matti Haukka ◽  
Hessa H. Al-Rasheed ◽  
Nael Abutaha ◽  
Ayman El-Faham ◽  
...  

The square planar complex [Pd(PT)Cl(H2O)]*H2O (HPT: 6-(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazine-2,4(1H,3H)-dione) was obtained by the reaction of 2-methoxy-4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazine (MBPT) pincer ligand with PdCl2 in a molar ratio (1:1) under thermal conditions and using acetone as a solvent. The reaction proceeded via C-N cleavage of one C-N moiety that connects the pyrazole and s-triazine combined with the hydrolysis of the O-CH3 group. The reaction of the chloride salt of its higher congener (PtCl2) gave [Pt(3,5-dimethyl-1H-pyrazole)2Cl2]. The crystal structure of [Pd(PT)Cl(H2O)]*H2O complex is stabilized by inter- and intra-molecular hydrogen bonding interactions. Hirshfeld analysis revealed that the H...H (34.6%), O...H (23.6%), and Cl...H (7.8%) interactions are the major contacts in the crystal. The charges at Pd, H2O, Cl and PT are changed to 0.4995, 0.2216, −0.4294 and −0.2917 instead of +2, 0, −1 and −1, respectively, using the MPW1PW91 method. [Pd(PT)Cl(H2O)]*H2O complex has almost equal activities against MDA-MB-231 and MCF-7 cell lines with IC50 of 38.3 µg/mL.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 746
Author(s):  
Jianfeng Lu ◽  
Senfeng Yang ◽  
Gechuanqi Pan ◽  
Jing Ding ◽  
Shule Liu ◽  
...  

Molten chloride salt is recognized as a promising heat transfer and storage medium in concentrating solar power in recent years, but there is a serious lack for thermal property data of molten chloride salts. In this work, local structures and thermal properties for molten chloride salt—including NaCl, MgCl2, and ZnCl2—were precisely simulated by Born–Mayer–Huggins (BMH) potential in a rigid ion model (RIM) and a polarizable ion model (PIM). Compared with experimental data, distances between cations, densities, and heat capacities of molten chloride slats calculated from PIM agree remarkably better than those from RIM. The polarization effect brings an extra contribution to screen large repulsive Coulombic interaction of cation–cation, and then it makes shorter distance between cations, larger density and lower heat capacity. For NaCl, MgCl2, and ZnCl2, PIM simulation deviations of distances between cations are respectively 3.8%, 3.7%, and 0.3%. The deviations of density and heat capacity for NaCl between PIM simulation and experiments are only 0.6% and 2.2%, and those for MgCl2 and ZnCl2 are 0.7–10.7%. As the temperature rises, the distance between cations increases and the structure turns into loose state, so the density and thermal conductivity decrease, while the ionic self-diffusion coefficient increases, which also agree well with the experimental results.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 241
Author(s):  
Xiaozhen Li ◽  
Hui Wang ◽  
Jianmin Wang ◽  
Junzhe Liu

In this work, the microstructure characteristics of corrosion products of reinforcement under a corrosive environment with chloride, carbonation and the combination of chloride-carbonization were studied by x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy/energy spectroscopy (SEM-EDX). The results indicate that the outside of the passivation film reacts with the cement slurry to produce Fe–SiO4 in all three corrosive environments. The inner side is not completely corroded. The morphology of the corrosion is different in the three environments. In a chloride environment, corrosion products have obvious cracks, and the local layered structure is dense. In a carbonation environment, the surface of the steel corrosion shows a uniform granular structure and loose texture. With the combination of chloride and combination, the surface of the structural layer of steel corrosion was uneven and accompanied by protrusions, cracking and spalling occurred. The composition of the corrosion substances in the three corrosion environments are mainly composed of FeO, Fe3O4, Fe2O3 and Fe–SiO4. The content of iron oxide increases from a chloride salt, carbonization to the composite environment, indicating that the corrosion degree intensifies successively.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3089
Author(s):  
Peilei Zhou ◽  
Wensheng Wang ◽  
Lili Zhu ◽  
Haoyun Wang ◽  
Yongming Ai

This study aims to investigate the performance evolution and mechanism of asphalt under action of chloride salt erosion. Asphalt samples soaked with five different snow melting chloride salt concentrations were taken as the research object. Then, the high-temperature performance, low-temperature performance, temperature sensitivity and asphalt–aggregate adhesion property of asphalt samples were carried out. Additionally, Fourier transform infrared spectroscopy (FTIR) was used to explore the mechanism of chloride salt erosion on asphalt. Test results showed the linear variation relationships of high-temperature performance, low-temperature performance and temperature sensitivity with chloride salt concentrations. The high-temperature performance of asphalt would be improved by chloride snowmelt salt. With the increase in the chloride salt solution concentration, the low-temperature performance of asphalt became worse, and the temperature sensitivity increased. Moreover, after the effect of the chloride salt solution, the asphalt–aggregate adhesion property decreased with the increase in the chloride salt solution concentration. It is necessary to control the amount of chloride snowmelt salt in the actual snow removal projects. Finally, based on Fourier transform infrared spectroscopy, the mechanism of chloride salt erosion on asphalt was preliminarily explored. With the increase in the chloride salt solution concentration, the proportion of light components (saturated fraction, aromatic fraction) in asphalt decreased, and the proportion of heavy components (resin and asphaltene) with good thermal stability increased.


Sign in / Sign up

Export Citation Format

Share Document