Blockage effect influence on model-scale marine propeller performance and cavitation pattern

2022 ◽  
Vol 120 ◽  
pp. 103019
Author(s):  
Eduardo Tadashi Katsuno ◽  
João Lucas Dozzi Dantas
2020 ◽  
Vol 8 (10) ◽  
pp. 786
Author(s):  
S. Polyzos ◽  
G. Tzabiras

The present work describes a simplified Computational Fluid Dynamics (CFD) approach in order to calculate the propulsive performance of a ship moving at steady forward speed in head seas. The proposed method combines experimental data concerning the added resistance at model scale with full scale Reynolds Averages Navier–Stokes (RANS) computations, using an in-house solver. In order to simulate the propeller performance, the actuator disk concept is employed. The propeller thrust is calculated in the time domain, assuming that the total resistance of the ship is the sum of the still water resistance and the added component derived by the towing tank data. The unsteady RANS equations are solved until self-propulsion is achieved at a given time step. Then, the computed values of both the flow rate through the propeller and the thrust are stored and, after the end of the examined time period, they are processed for calculating the variation of Shaft Horsepower (SHP) and RPM of the ship’s engine. The method is applied for a bulk carrier which has been tested in model scale at the towing tank of the Laboratory for Ship and Marine Hydrodynamics (LSMH) of the National Technical University of Athens (NTUA).


2020 ◽  
Vol 8 (2) ◽  
pp. 141 ◽  
Author(s):  
Ville Viitanen ◽  
Timo Siikonen ◽  
Antonio Sánchez-Caja

In this paper, we conducted numerical simulations to investigate single and two-phase flows around marine propellers in open-water conditions at different Reynolds number regimes. The simulations were carried out using a homogeneous compressible two-phase flow model with RANS and hybrid RANS/LES turbulence modeling approaches. Transition was accounted for in the model-scale simulations by employing an LCTM transition model. In model scale, also an anisotropic RANS model was utilized. We investigated two types of marine propellers: a conventional and a tip-loaded one. We compared the results of the simulations to experimental results in terms of global propeller performance and cavitation observations. The propeller cavitation, near-blade flow phenomena, and propeller wake flow characteristics were investigated in model- and full-scale conditions. A grid and time step sensitivity studies were carried out with respect to the propeller performance and cavitation characteristics. The model-scale propeller performance and the cavitation patterns were captured well with the numerical simulations, with little difference between the utilized turbulence models. The global propeller performance and the cavitation patterns were similar between the model- and full-scale simulations. A tendency of increased cavitation extent was observed as the Reynolds number increases. At the same time, greater dissipation of the cavitating tip vortex was noted in the full-scale conditions.


2014 ◽  
Vol 14 (22) ◽  
pp. 3083-3088 ◽  
Author(s):  
Kiam Beng Yeo ◽  
Rosalam Sabatly ◽  
Wen Yee Hau ◽  
Cheah Meng Ong

2019 ◽  
Vol 213 ◽  
pp. 02007
Author(s):  
Fatima Bouregba ◽  
Mustapha Belkadi ◽  
Mohammed Aounallah ◽  
Lahouari Adjlout

This paper deals with numerical simulation of stationary flow around a marine propeller. The aim is to reproduce the hydrodynamic turbulent flow around the Wageningen B serie propellers in open water using the ANSYS FLUENT code and the RANS approach. The computational domain consists of an inter-blade channel with periodic boundaries, meshed with tetrahedral cells. The turbulence is modeled with the k-ω. The obtained results provide good agreement with the available experimental data and show that the blades number affects considerably the marine propellers performances. It is interesting to notice that the six blades propeller is the best adapted one for the open water flows.


1999 ◽  
Vol 121 (3) ◽  
pp. 638-645 ◽  
Author(s):  
Chao-Tsung Hsiao ◽  
Laura L. Pauley

The uniform flow past a rotating marine propeller was studied using incompressible Reynolds-averaged Navier-Stokes computations with the Baldwin-Barth turbulence model. Extensive comparison with the experimental data was made to validate the numerical results. The general characteristics of the propeller flow were well predicted. The current numerical method, however, produced an overly diffusive and dissipative tip vortex core. Modification of the Baldwin-Barth model to better predict the Reynolds stress measurements also improved the prediction of the mean velocity field. A modified tip geometry was also tested to show that an appropriate cross section design can delay cavitation inception in the tip vortex without reducing the propeller performance.


Author(s):  
Eduardo Tadashi Katsuno ◽  
Joao Lucas Dozzi Dantas ◽  
Emilio Carlos Nelli Silva

This paper aims to perform a numerical analysis of application effects of a superhydrophobic paint by completely coating the blades of a model-scale marine propeller in order to make it a superhydrophobic surface (SHS). First, a two-dimensional study was conducted. Two foils were analyzed for several hydrophobic conditions, varying the slip length. Pressure and skin friction distributions were shown. There is an increase of lift-to-drag ratio with hydrophobicity, but followed by an increase in suction pressure. In three-dimensional case, a propeller was simulated for several hydrophobic conditions, comparing thrust, torque and efficiency coefficients and pressure and friction distribution. Results with propeller showed that an increase in slip length is not always followed by an increase in efficiency, with an apparent efficiency gain limit. For the imposed simulation conditions, from the limit of gain, efficiency no longer increases with hydrophobicity, but its area of low pressure continues to grow.


2014 ◽  
Vol 66 (2) ◽  
Author(s):  
M. Nakisa ◽  
A. Maimun ◽  
Yasser M. Ahmed ◽  
Jaswar Jaswar ◽  
A. Priyanto ◽  
...  

Marine propeller blade geometries, especially LNG carriers, are very complicated and determining the hydrodynamic performance of these propellers using experimental work is very expensive, time consuming and has many difficulties in calibration of marine laboratory facilities. This paper presents the assessment on the effect of turbulent model and mesh density on propeller hydrodynamic parameters. Besides that, this paper focuses on the LNG carrier Tanaga class propeller hydrodynamic performance coefficients such as Kt, Kq and η, with respect to the different advance coefficient (j). Finally, the results from numerical simulation that were calculated based on RANS (Reynolds Averaged Navier Stocks) equations, were compared with existing experimental results, followed by analysis and discussion sections. As a result the maximum hydrodynamic propeller efficiency occurred when j=0.84.


2014 ◽  
Vol 14 (11) ◽  
pp. 1215-1219
Author(s):  
Kiam Beng Yeo ◽  
Wai Heng Choong ◽  
Wen Yee Hau

Sign in / Sign up

Export Citation Format

Share Document