Optimizing performance of a three-bed adsorption chiller using new cycle time allocation and mass recovery

2016 ◽  
Vol 100 ◽  
pp. 744-752 ◽  
Author(s):  
Bartosz Zajaczkowski
2019 ◽  
Vol 11 (10) ◽  
pp. 168781401988478
Author(s):  
M Gado ◽  
E Elgendy ◽  
Khairy Elsayed ◽  
M Fatouh

This article aims to improve the system cooling capacity of an adsorption chiller working with a silica gel/water pair by an allocation of the optimum cycle time at different operating conditions. A mathematical model was established and validated with the literature experimental data to predict the optimum cycle time for a wide range of hot (55°C–95°C), cooling (25°C–40°C), and chilled (10°C–22°C) water inlet temperatures. The optimum and conventional chiller performances are compared at different operating conditions. Enhancement ratio of the system cooling capacity was tripled as the cooling water inlet temperature increased from 25°C to 40°C at constant hot and chilled water inlet temperatures of 85°C and 14°C, respectively. Applying the concept of the optimum cycle time allocation, the system cooling capacity enhancement ratio can reach 15.6% at hot, cooling, and chilled water inlet temperatures of 95°C, 40°C, and 10°C, respectively.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3871
Author(s):  
Ahmad A. Alsarayreh ◽  
Ayman Al-Maaitah ◽  
Menwer Attarakih ◽  
Hans-Jörg Bart

Adsorption cooling can recover waste heat at low temperature levels, thereby saving energy and reducing greenhouse gas emissions. An air-cooled adsorption cooling system reduces water consumption and the technical problems associated with wet-cooling systems; however, it is difficult to maintain a constant recooling water temperature using such a system. To overcome this limitation, a variable mode adsorption chiller concept was introduced and investigated in this study. A prototype adsorption chiller was designed and tested experimentally and numerically using the lumped model. Experimental and numerical results showed good agreement and a similar trend. The adsorbent pairs investigated in this chiller consisted of silicoaluminophosphate (SAPO-34)/water. The experimental isotherm data were fitted to the Dubinin–Astakhov (D–A), Freundlich, Hill, and Sun and Chakraborty (S–C) models. The fitted data exhibited satisfactory agreement with the experimental data except with the Freundlich model. In addition, the adsorption kinetics parameters were calculated using a linear driving force model that was fitted to the experimental data with high correlation coefficients. The results show that the kinetics of the adsorption parameters were dependent on the partial pressure ratio. Four cooling cycle modes were investigated: single stage mode and mass recovery modes with duration times of 25%, 50%, and 75% of the cooling cycle time (denoted as short, medium, and long mass recovery, respectively). The cycle time was optimized based on the maximum cooling capacity. The single stage, short mass recovery, and medium mass recovery modes were found to be the optimum modes at lower (<35 °C), medium (35–44 °C), and high (>44 °C) recooling temperatures. Notably, the recooling water temperature profile is very important for assessing and optimizing the suitable working mode.


2007 ◽  
Vol 32 (3) ◽  
pp. 365-381 ◽  
Author(s):  
M.Z.I. Khan ◽  
B.B. Saha ◽  
K.C.A. Alam ◽  
A. Akisawa ◽  
T. Kashiwagi

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7743
Author(s):  
Karol Sztekler ◽  
Łukasz Mika

The intensive development of the world economy and the expected population growth mean that demand for cooling and water will continue to rise. The use of conventional technologies to meet this demand is associated with an enormous expenditure of electricity, which still comes mainly from non-renewable sources. With the increasing demand for energy, the increasing scarcity of drinking water, and the negative impact of humankind on the environment due to global warming and ozone depletion, intensive research has been carried out to find modern desalination technologies Most of the technologies use electricity for the process of desalination, and over 6% of the world’s electricity is generated from non-renewable sources, thus increasing the emissions of harmful pollutants into the atmosphere. One possibility to reduce emissions is the use of adsorption chillers with desalination function, which allow the production of cooling simultaneously with the process of water desalination. These systems can be powered by low-temperature waste heat from industrial processes or from renewable sources (solar panels) and require little electricity to operate. This paper presents options to improve their performance and increase the production of condensate in the process of desalination of saline water. Moreover, also presented are the results of tests carried out on a two-bed adsorption chiller with desalination function. The aim of the study was to determine the effect of cycle time on the cooling coefficient of performance (COP) and on the production of condensate from water desalination. The obtained results confirmed that increasing the adsorption and desorption cycle time leads to an increase in the COP value of the adsorption chiller, but the efficiency of the desalination process and condensate production decreases with increasing cycle time.


1970 ◽  
Vol 3 (2) ◽  
pp. 59-67 ◽  
Author(s):  
MZI Khan ◽  
S Sultana ◽  
A Akisawa ◽  
T Kashiwagi

This paper investigates the thermodynamic framework of a three-bed advanced adsorption chiller, where the mass recovery scheme has been utilized such that the performances of this chiller could be improved and a CFC-free-based sorption chiller driven by the low-grade waste heat or any renewable energy source can be developed for the next generation of refrigeration. Silica gel-water is chosen as adsorbent-refrigerant pair. The three-bed adsorption chiller comprises with three sorption elements (SEs), one evaporator and one condenser. The configuration of SE1 and SE2 are identical, but the configuration of SE3 is taken as half of SE1 or SE2. Mass recovery process occurs between SE3 with either SE1 or SE2 and no mass recovery between SE1 and SE2 occurs. The mathematical model shown herein is solved numerically. In the present numerical solution, the heat source temperature variation is taken from 50 to 90ºC along with coolant inlet temperature at 30ºC and the chilled water inlet temperature at 14ºC. A cycle simulation computer program is constructed to analyze the influence of operating conditions (hot and cooling water temperature) on COP (coefficient of performance), SCP (specific cooling power), η (chiller efficiency) and chilled water outlet temperature. Keywords: Adsorption; COP; SCP; Mass recovery; Silica gel-waterDOI: 10.3329/jname.v3i2.920 Journal of Naval Architecture and Marine Engineering 3(2006) 59-67 


2016 ◽  
Author(s):  
K. M. Ariful Kabir ◽  
K. C. Amanul Alam ◽  
Rifat A. Rouf ◽  
M. M. A. Sarker

2015 ◽  
Vol 56 ◽  
pp. 52-64 ◽  
Author(s):  
Uwe Bau ◽  
Anna-Lena Braatz ◽  
Franz Lanzerath ◽  
Michael Herty ◽  
André Bardow

Sign in / Sign up

Export Citation Format

Share Document