Experiment research on influence factors of the separated heat pipe system, especially the filling ratio and Freon types

2017 ◽  
Vol 118 ◽  
pp. 357-364 ◽  
Author(s):  
Tao Ding ◽  
Han wen Cao ◽  
Zhi guang He ◽  
Zhen Li
2008 ◽  
Author(s):  
Shiro Ueno ◽  
Dmitry Khrustalev ◽  
Peter Cologer ◽  
Russ Snyder

2015 ◽  
Vol 90 ◽  
pp. 937-944 ◽  
Author(s):  
Zhenying Wang ◽  
Xiaotong Zhang ◽  
Zhen Li ◽  
Ming Luo

Author(s):  
Mohammad Mamunur Rahman ◽  
Manabendra Saha ◽  
Muhammad Mostafa Kamal Bhuiya ◽  
Auvi Biswas ◽  
Md. Hasibul Alam ◽  
...  

2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Brian Reding ◽  
Yiding Cao

Heat pipe technology offers a possible cooling technique for structures exposed to high heat fluxes, as in turbomachinery such as compressors and turbines. However, in its current configuration as single heat pipes, implementation of the technology is limited due to the difficulties in manufacturability and costs. Hence, a study to develop a new radially rotating (RR) heat pipe system was undertaken, which integrates multiple RR heat pipes with a common reservoir and interconnected braches for a more effective and practical solution to turbomachinery cooling. Experimental study has shown that the integration of multiple heat pipe branches with a reservoir at the top is feasible.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5282
Author(s):  
Eui-Hyeok Song ◽  
Kye-Bock Lee ◽  
Seok-Ho Rhi ◽  
Kibum Kim

A concentric annular heat pipe heat sink (AHPHS) was proposed and fabricated to investigate its thermal behavior. The present AHPHS consists of two concentric pipes of different diameters, which create vacuumed annular vapor space. The main advantage of the AHPHS as a heat sink is that it can largely increase the heat transfer area for cooling compared to conventional heat pipes. In the current AHPHS, condensation takes place along the whole annular space from the certain heating area as the evaporator section. Therefore, the whole inner space of the AHPHS except the heating area can be considered the condenser. In the present study, AHPHSs of different diameters were fabricated and studied experimentally. Basic studies were carried out with a 50 mm-long stainless steel AHPHS with diameter ratios of 1.1 and 1.3 and the same inner tube diameter of 76 mm. Several experimental parameters such as volume fractions of 10–70%, different air flow velocity, flow configurations, and 10–50 W heat inputs were investigated to find their effects on the thermal performance of an AHPHS. Experimental results show that a 10% filling ratio was found to be the optimum charged amount in terms of temperature profile with a low heater surface temperature and water as the working fluid. For the methanol, a 40% filling ratio shows better temperature behavior. Internal working behavior shows not only circular motion but also 3-D flow characteristics moving in axial and circular directions simultaneously.


2015 ◽  
Vol 645-646 ◽  
pp. 1032-1037
Author(s):  
Cong Ming Li ◽  
Yi Luo ◽  
Chuan Peng Zhou ◽  
Liang Liang Zou ◽  
Xiao Dong Wang ◽  
...  

There are several factors that affect heat transfer of heat pipe, for example, structure dimension, filling ratio and vacuum degree of charging. This paper studied the thermal conductivity of micro flat heat pipes (MFHPs) with different structure dimension and with different filling ratio, when the charging vacuum degree of MFHP was decided. When electric power was 2W or 4W, MFHPs with parallel grooves and nonparallel grooves, charged by working fluid with different filling ratio, were carried out. And the filling ratio is 30%, 40% and 50%, respectively. The better thermal performance of MFHP can be evaluated by lower thermal resistance and higher effective thermal conductivity. The experiment results show that MFHP has the highest effective thermal conductivity when the filling ratio is 40%; and the thermal performance of MFHP with nonparallel structure in axial direction is better than that of MFHP with parallel structure.


Author(s):  
Brian S. Robinson ◽  
M. Keith Sharp

Thermal performance of an improved passive solar heat pipe system was directly compared to that of a previous prototype. Simulated and experimental results for the first prototype established baseline performance. Subsequently, potential improvements were simulated, and a second prototype was built and tested along side the first. The system uses heat pipes for high rates of heat transfer into the building, and limited losses in the reverse direction. The evaporator section of each heat pipe is attached to a glass-covered absorber on the outside of a south wall, and the slightly elevated condenser section is either immersed in water in a thermal storage tank or exposed to air in the room. Two-phase flow occurs in the heat pipe only when the evaporator is warmer than the condenser, creating a thermal diode effect. Computer simulations showed that system performance could be improved by using thicker insulation between the absorber and the storage tanks, and by switching from a copper to a rubber adiabatic section, which both reduced heat losses to ambient from the storage tanks. Early morning heating was improved by exposing one of five condensers directly to room air, which also improved overall system efficiency. A copper solar absorber soldered to the copper evaporator section improved heat conduction compared to the previous aluminum absorber bonded to the copper evaporator. Together these modifications improved simulated annual solar fraction by 20.8%. The new prototype incorporating these changes was tested along side the previous prototype in a two-room passive solar test facility during January through February of 2013. Temperatures were monitored with thermocouples at multiple locations throughout the systems, in each room and outdoors. Insolation was measured by four pyranometers attached to the building. Results showed that the design modifications implemented for the new model increased thermal gains to storage and to the room, and decreased thermal losses to ambient. The load-to-collector ratio for the experiments was 2.7 times lower than for the simulations, which decreased the potential for experimental improvements compared to the simulated improvements. However, average daily peak efficiency for the new system was 85.0%, compared to 80.7% for the previous system. Furthermore, the average storage temperature over the entire testing period for the new model was 13.4% higher than that of the previous model, while the average room temperature over the same period was 24.6% greater for the new system.


Sign in / Sign up

Export Citation Format

Share Document