Experiments on methane hydrates formation in seabed deposits and gas recovery adopting carbon dioxide replacement strategies

2019 ◽  
Vol 148 ◽  
pp. 371-381 ◽  
Author(s):  
Federico Rossi ◽  
Alberto Maria Gambelli ◽  
Deepak Kumar Sharma ◽  
Beatrice Castellani ◽  
Andrea Nicolini ◽  
...  
2021 ◽  
Author(s):  
Azeez Gbenga Aregbe ◽  
Ayoola Idris Fadeyi

Abstract Clathrate hydrates are non-stoichiometric compounds of water and gas molecules coexisting at relatively low temperatures and high pressures. The gas molecules are trapped in cage-like structures of the water molecules by hydrogen bonds. There are several hydrate deposits in permafrost and oceanic sediments with an enormous amount of energy. The energy content of methane in hydrate reservoirs is considered to be up to 50 times that of conventional petroleum resources, with about 2,500 to 20,000 trillion m3 of methane gas. More than 220 hydrate deposits in permafrost and oceanic sediments have been identified to date. The exploration and production of these deposits to recover the trapped methane gas could overcome the world energy challenges and create a sustainable energy future. Furthermore, global warming is a major issue facing the world at large and it is caused by greenhouse gas emissions such as carbon dioxide. As a result, researchers and organizations have proposed various methods of reducing the emission of carbon dioxide gas. One of the proposed methods is the geological storage of carbon dioxide in depleted oil and gas reservoirs, oceanic sediments, deep saline aquifers, and depleted hydrate deposits. Studies have shown that there is the possibility of methane gas production and carbon dioxide storage in hydrate reservoirs using the injection of carbon dioxide and nitrogen gas mixture. However, the conventional hydrocarbon production methods cannot be used for the hydrate reservoirs due to the nature of these reservoirs. In addition, thermal stimulation and depressurization are not effective methods for methane gas production and carbon sequestration in hydrate-bearing sediments. Therefore, the gas replacement method for methane production and carbon dioxide storage in clathrate hydrate is investigated in this paper. The research studies (experiments, modeling/simulation, and field tests) on CO2/N2 gas mixture injection for the optimization of methane gas recovery in hydrate reservoirs are reviewed. It was discovered that the injection of the gas mixture enhanced the recovery process by replacing methane gas in the small and large cages of the hydrate. Also, the presence of N2 molecules significantly increased fluid injectivity and methane recovery rate. In addition, a significant amount of free water was not released and the hydrate phase was stable during the replacement process. It is an effective method for permanent storage of carbon dioxide in the hydrate layer. However, further research studies on the effects of gas composition, particle size, and gas transport on the replacement process and swapping rate are required.


SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 522-530 ◽  
Author(s):  
Stian Almenningen ◽  
Per Fotland ◽  
Martin A. Fernø ◽  
Geir Ersland

Summary Sedimentary methane hydrates contain a vast amount of untapped natural gas that can be produced through pressure depletion. Several field pilots have proved the concept with days to weeks of operation, but the longer-term response remains uncertain. This paper investigates the parameters affecting the rate of gas recovery from methane-hydrate-bearing sediments. The recovery of methane gas from hydrate dissociation through pressure depletion was studied at different initial hydrate saturations and different constant production pressures in cylindrical sandstone cores. Core-scale dissociation patterns were mapped with magnetic resonance imaging (MRI), and pore-scale dissociation events were visualized in a high-pressure micromodel. Key findings from the gas-production-rate analysis are that the maximum rate of recovery is only to a small extent affected by the magnitude of the pressure reduction below the dissociation pressure, and that the hydrate saturation directly affects the rate of recovery, where intermediate hydrate saturations (0.30 to 0.50) give the highest initial recovery rate. These results are of interest to anyone who evaluates the production performance of sedimentary hydrate accumulations and demonstrate how important accurate saturation estimates are to prediction of both the initial rate of gas recovery and the ultimate-recovery efficiency.


2021 ◽  
Vol 1 (3(57)) ◽  
pp. 6-11
Author(s):  
Serhii Matkivskyi

The object of research is gas condensate reservoirs, which is being developed under the conditions of the manifestation of the water drive of development and the negative effect of formation water on the process of natural gas production. The results of the performed theoretical and experimental studies show that a promising direction for increasing hydrocarbon recovery from fields at the final stage of development is the displacement of natural gas to producing wells by injection non-hydrocarbon gases into productive reservoirs. The final gas recovery factor according to the results of laboratory studies in the case of injection of non-hydrocarbon gases into productive reservoirs depends on the type of displacing agent and the level heterogeneity of reservoir. With the purpose update the existing technologies for the development of fields in conditions of the showing of water drive, the technology of injection carbon dioxide into productive reservoirs at the boundary of the gas-water contact was studied using a digital three-dimensional model of a gas condensate deposit. The study was carried out for various values of the rate of natural gas production. The production well rate for calculations is taken at the level of 30, 40, 50, 60, 70, 80 thousand m3/day. Based on the data obtained, it has been established that an increase in the rate of natural gas production has a positive effect on the development of a productive reservoir and leads to an increase in the gas recovery factor. Based on the results of statistical processing of the calculated data, the optimal value of the rate of natural gas production was determined when carbon dioxide is injected into the productive reservoir at the boundary of the gas-water contact is 55.93 thousand m3/day. The final gas recovery factor for the optimal natural gas production rate is 64.99 %. The results of the studies carried out indicate the technological efficiency of injecting carbon dioxide into productive reservoirs at the boundary of the gas-water contact in order to slow down the movement of formation water into productive reservoirs and increase the final gas recovery factor.


2022 ◽  
pp. 305-347
Author(s):  
Junping Zhou ◽  
Shifeng Tian ◽  
Kang Yang ◽  
Zhiqiang Dong ◽  
Jianchao Cai

Sign in / Sign up

Export Citation Format

Share Document