A Comprehensive Review on CO2/N2 Mixture Injection for Methane Gas Recovery in Hydrate Reservoirs

2021 ◽  
Author(s):  
Azeez Gbenga Aregbe ◽  
Ayoola Idris Fadeyi

Abstract Clathrate hydrates are non-stoichiometric compounds of water and gas molecules coexisting at relatively low temperatures and high pressures. The gas molecules are trapped in cage-like structures of the water molecules by hydrogen bonds. There are several hydrate deposits in permafrost and oceanic sediments with an enormous amount of energy. The energy content of methane in hydrate reservoirs is considered to be up to 50 times that of conventional petroleum resources, with about 2,500 to 20,000 trillion m3 of methane gas. More than 220 hydrate deposits in permafrost and oceanic sediments have been identified to date. The exploration and production of these deposits to recover the trapped methane gas could overcome the world energy challenges and create a sustainable energy future. Furthermore, global warming is a major issue facing the world at large and it is caused by greenhouse gas emissions such as carbon dioxide. As a result, researchers and organizations have proposed various methods of reducing the emission of carbon dioxide gas. One of the proposed methods is the geological storage of carbon dioxide in depleted oil and gas reservoirs, oceanic sediments, deep saline aquifers, and depleted hydrate deposits. Studies have shown that there is the possibility of methane gas production and carbon dioxide storage in hydrate reservoirs using the injection of carbon dioxide and nitrogen gas mixture. However, the conventional hydrocarbon production methods cannot be used for the hydrate reservoirs due to the nature of these reservoirs. In addition, thermal stimulation and depressurization are not effective methods for methane gas production and carbon sequestration in hydrate-bearing sediments. Therefore, the gas replacement method for methane production and carbon dioxide storage in clathrate hydrate is investigated in this paper. The research studies (experiments, modeling/simulation, and field tests) on CO2/N2 gas mixture injection for the optimization of methane gas recovery in hydrate reservoirs are reviewed. It was discovered that the injection of the gas mixture enhanced the recovery process by replacing methane gas in the small and large cages of the hydrate. Also, the presence of N2 molecules significantly increased fluid injectivity and methane recovery rate. In addition, a significant amount of free water was not released and the hydrate phase was stable during the replacement process. It is an effective method for permanent storage of carbon dioxide in the hydrate layer. However, further research studies on the effects of gas composition, particle size, and gas transport on the replacement process and swapping rate are required.

2020 ◽  
Vol 18 (2) ◽  
pp. 191
Author(s):  
Muchamad Muchlas ◽  
Siti Chuzaemi ◽  
Mashudi Mashudi

<p class="MDPI17abstract"><strong>Objective: </strong>The purpose of this research was to evaluate the effect supplementation of mimosa powder as a source of condensed tannins and a single fatty acid, myristic acid, in a complete feed based on corn stover (<em>Zea mays</em>) using the in-vitro gas production method. This research has been carried out at the Animal Nutrition and Food Laboratory, Faculty of Animal Husbandry, Brawijaya University. The time of the research was conducted in August until December 2019.</p><p class="MDPI17abstract"><strong>Methods: </strong>The experimental design used randomized complete block design by ANOVA consisting four treatments and three replications which were P1= a complete feed based on corn stover (<em>Zea mays</em>) as control Diet (CD) (40% corn stover + 60 % concentrate), P2= (CD) + Mimosa Powder(MP) 1.5 %/kg DM + myristic acid (MA)2% /kg DM, P3= CD + MP 1.5 % /kg DM + MA 3% /kg DM, and P4= CD + MP 1.5 %/kg DM + MA 4 %/kg DM.</p><p class="MDPI17abstract"><strong>Results: </strong>The results showed that the treatments affected total gas production (p&lt;0.01). The highest value for total gas production was found in P1 (86.67 ml/500 mg DM) and the lowest was found in P3 (73.30 ml/500 mg DM). The results showed that gas production decreased concurrently with the increase of MA level. In vitro methane gas and carbon dioxide production was showed different (p&lt;0.05) from the control treatment. The lowest concentration of methane production was in P4 (82863.07 ppm) and the highest concentration was in treatment P1 86530.89 ppm. The highest total carbon dioxide content was P1 (436711.57 ppm) and the lowest concentration was P3 (350287.72 ppm).</p><p class="MDPI17abstract"><strong>Conclusions: </strong>The results of the research concluded that the addition of mimosa powder and 3 different levels of myristic acid in a complete feed based on corn stover can increase the nutritional value of a complete feed and reduce the production of methane gas.</p>


2021 ◽  
Vol 1 (3(57)) ◽  
pp. 6-11
Author(s):  
Serhii Matkivskyi

The object of research is gas condensate reservoirs, which is being developed under the conditions of the manifestation of the water drive of development and the negative effect of formation water on the process of natural gas production. The results of the performed theoretical and experimental studies show that a promising direction for increasing hydrocarbon recovery from fields at the final stage of development is the displacement of natural gas to producing wells by injection non-hydrocarbon gases into productive reservoirs. The final gas recovery factor according to the results of laboratory studies in the case of injection of non-hydrocarbon gases into productive reservoirs depends on the type of displacing agent and the level heterogeneity of reservoir. With the purpose update the existing technologies for the development of fields in conditions of the showing of water drive, the technology of injection carbon dioxide into productive reservoirs at the boundary of the gas-water contact was studied using a digital three-dimensional model of a gas condensate deposit. The study was carried out for various values of the rate of natural gas production. The production well rate for calculations is taken at the level of 30, 40, 50, 60, 70, 80 thousand m3/day. Based on the data obtained, it has been established that an increase in the rate of natural gas production has a positive effect on the development of a productive reservoir and leads to an increase in the gas recovery factor. Based on the results of statistical processing of the calculated data, the optimal value of the rate of natural gas production was determined when carbon dioxide is injected into the productive reservoir at the boundary of the gas-water contact is 55.93 thousand m3/day. The final gas recovery factor for the optimal natural gas production rate is 64.99 %. The results of the studies carried out indicate the technological efficiency of injecting carbon dioxide into productive reservoirs at the boundary of the gas-water contact in order to slow down the movement of formation water into productive reservoirs and increase the final gas recovery factor.


Gas hydrates are solid crystalline structures in which water molecules trap small guest gas molecules and encage them through hydrogen bonding. Gas hydrates are known to be problematic in flow assurance applications as they can form plug inside the pipelines during oil and gas production, transportation and processing. In order to inhibit hydrate formation thermodynamically, various chemicals including some alcohols e.g. methanol (MeOH), mono- ethylene glycol (MEG) are used as thermodynamic hydrate inhibitors (THIs). In this paper, a simulation study is performed using PVTsim software wherein it predicts the hydrate formation for pure CO2 solution mixture and CO2 -MEG solution mixture systems using different equation of states. These equations of states include Soave-Redlich-Kwong (SRK), SRK-Peneloux, Peng- Robinson (PR) and Peng-Robinson Peneloux. The simulation results obtained using these equation of states were validated with the experimental data and PRPenelouxEoS was found to be in better agreement. The hydrate formation regions are determined in between the pressure range of 10 to 110 bara for natural gas mixture containing high percentage of CO2 in it. The inhibitors are used in 5, 10 and 20 wt% concentrations. The hydrate inhibition efficiency increased with the increase in concentration. Simulation results showed that methanol performed better in comparison to the other inhibitors at all concentrations.


2017 ◽  
Vol 12 (1) ◽  
pp. 86
Author(s):  
Leksono Mucharam ◽  
Silvya Rahmawati ◽  
Rafael Purba

Coal Bed Methane (CBM) is an unconventional resource that shows great promise, particularly in Indonesia, whose CBM reservoir is relatively thick. Gas reserves of CBM are estimated at 450 TSCF in Indonesia, which makes it, the 6th largest CBM-containing country in the world. However, regulatory and technical limitations slow the progression of the exploitation of this resource. One of the fundamental technical problems is related to the length of gas production due to the duration of the dewatering time. Many studies have been developed related to the production of CBM, and this paper discusses several characteristics, patterns and techniques regarding the production of methane gas from coal through the use of a sacrifice well. Several scenarios are analysed with the use of a simulator. The results show that the production of a thick CBM reservoir, with some sensitivity patterns of production through the use of a sacrifice well, have an influence on the production of gas and water for the exploitation of CBM resources. In other words, the use of new techniques that are discussed in this paper have an impact on reducing the dewatering time and are effectively implemented in Indonesia, which has thick CBM formations.


Sign in / Sign up

Export Citation Format

Share Document