An experimental investigation of the performance and emissions of a hydrogen-diesel dual fuel compression ignition internal combustion engine

2019 ◽  
Vol 156 ◽  
pp. 660-667 ◽  
Author(s):  
Nicolas Castro ◽  
Mario Toledo ◽  
German Amador
Author(s):  
L. F. R. Fell

The author considers that, while the internal combustion engine is not universally applicable to British railway traction, there is a wide field which can be more economically covered by the oil engine than by other means. Electric transmission is, in spite of high first cost, the most readily adaptable for use in conjunction with the oil engine, and possesses a balance of advantages over all other known systems. The oil-electric locomotive offers a long list of important advantages for railway operation not possessed by other systems. These advantages are, however, offset by high first cost for powers of 1,000 b.h.p. and over. A comparison is drawn between the first cost of steam and oil-electric locomotives for the various duties called for in the service of a British railway. This shows that, while the first cost of the oil-electric main line express passenger locomotive is three times that of the existing steam locomotive, the first costs of branch passenger, medium goods, and shunting steam and oil-electric engines are comparable. This is owing to the cost per brake horse-power required diminishing with increase of size in the case of the steam locomotive, whereas it remains constant in the case of the oil-electric. Owing to the high rate of acceleration necessary the use of the oil-electric system is considered unsuitable as a substitute for dependent electrification of suburban lines. The railway oil engine is a specialized requirement. It must be of the high-speed type running at speeds of up to 1,500 r.p.m., in order to reduce first cost and for other reasons. Details are given of various types of British compression-ignition engines which are considered suitable for British railway work. The author deduces that an engine of twelve-cylinder “V” type and an engine with six cylinders in line, both incorporating the same design and size of cylinder, would fill all the requirements which can be economically met by the oil engine on a British railway. He selects the single sleeve-valve engine design as having the greatest balance of advantages in its favour for railway purposes. Attention is drawn to the importance of simplifying the installation of the compression-ignition engine and various suggestions are put forward to this end. In conclusion the author stresses the importance of the railway companies giving a lead to the internal combustion engine industry as to the railway requirements in size and type of engine, and states that it is the purpose of his paper to assist those concerned in arriving at this immediately important decision.


Fuel ◽  
2020 ◽  
Vol 279 ◽  
pp. 118469
Author(s):  
Satishchandra Salam ◽  
Tushar Choudhary ◽  
Arivalagan Pugazhendhi ◽  
Tikendra Nath Verma ◽  
Abhishek Sharma

2016 ◽  
Vol 18 (8) ◽  
pp. 797-809 ◽  
Author(s):  
Mateos Kassa ◽  
Carrie Hall ◽  
Andrew Ickes ◽  
Thomas Wallner

In internal combustion engines, cycle-to-cycle and cylinder-to-cylinder variations of the combustion process have been shown to negatively impact the fuel efficiency of the engine and lead to higher exhaust emissions. The combustion variations are generally tied to differences in the composition and condition of the trapped mass throughout each cycle and across individual cylinders. Thus, advanced engines featuring exhaust gas recirculation, flexible valve actuation systems, advanced fueling strategies, and turbocharging systems are prone to exhibit higher variations in the combustion process. In this study, the cylinder-to-cylinder variations of the combustion process in a dual-fuel internal combustion engine leveraging late intake valve closing are investigated and a model to predict and address one of the root causes for these variations across cylinders is developed. The study is conducted on an inline six-cylinder heavy-duty dual-fuel engine equipped with exhaust gas recirculation, a variable geometry turbocharger, and a fully flexible variable intake valve actuation system. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode in which a high reactivity fuel is directly injected into the cylinders and a low reactivity fuel is port injected into the cylinders. The cylinder-to-cylinder variations observed in the study have been associated with the maldistribution of the port-injected fuel, which is exacerbated at late intake valve timings. The resulting difference in indicated mean effective pressure between the cylinders ranges from 9% at an intake valve closing of 570° after top dead center to 38% at an intake valve closing of 620° after top dead center and indicates an increasingly uneven fuel distribution. The study leverages both experimental and simulation studies to investigate the distribution of the port-injected fuel and its impact on cylinder-to-cylinder variation. The effects of intake valve closing as well as the impact of intake runner length on fuel distribution were quantitatively analyzed, and a model was developed that can be used to accurately predict the fuel distribution of the port-injected fuel at different operating conditions with an average estimation error of 1.5% in cylinder-specific fuel flow. A model-based control strategy is implemented to adjust the fueling at each port and shown to significantly reduce the cylinder-to-cylinder variations in fuel distribution.


Sign in / Sign up

Export Citation Format

Share Document