Analysis of flow dead zone in shell side of a heat exchanger with torsional flow in shell side

2020 ◽  
Vol 180 ◽  
pp. 115792 ◽  
Author(s):  
Xin Gu ◽  
Weijie Chen ◽  
Yunge Fang ◽  
Shuai Song ◽  
Chaopeng Wang ◽  
...  
2013 ◽  
Vol 441 ◽  
pp. 522-525
Author(s):  
Hai Yan Wang ◽  
Na Wang ◽  
Juan Song ◽  
Rui Ying Shao

The auger-type heat exchanger possesses many merits, such as compact structure, high thermal efficiency, and is mainly used in food, oil, natural gas and chemical industry. The shell-side fluid characteristics are calculated through FLUENT based on computational fluid dynamics (CFD) theory, and the typical regional and cross-section of the shell-side fluid are analyzed in detail. The results show that current "dead zone" exists in the head of the receiver at the entrance and the core body, which is not conducive to the efficiency and service life of the heat exchanger, and a large pressure exists on the outer heat transfer tubes at the entrance, which leads to the erosion.


2019 ◽  
Vol 2 (1) ◽  
pp. 43-52
Author(s):  
Linta Atina Rahmah ◽  
Devy Setiorini Sa’adiyah ◽  
Sulistijono Sulistijono

E-201-11 is one of the components of heat exchanger which serves to increase the temperature of distillated crude oil before it going into the furnace. The use of segmental baffles on the heat exchanger causes dead zone. The fouling phenomenon that arises from the deposition of the compound content in the service fluid in dead zone can result in leakage of the shell and tube. It affects the performance of heat exchanger and production efficiency. The use of discontinuous helical baffle on the shell side minimizes fouling. Research on the variation of helical baffle angle by using Bell-Delaware method resulted in performance value of heat transfer coefficient and pressure drop on the shell side. Fluid flow behavior on the shell side with helical baffle was analyzed by Computational Fluid Dynamics (CFD). The fluid flow velocity is a factor that affects the value of heat transfer coefficient and pressure drop. Heat exchanger with an angle of 10º have fluid flow velocity of 0,893m/s resulting in the highest heat transfer coefficient and pressure drop value compared to angles of 15º and 20º with values of 585.725W/m²K and 13642.395Pa. The heat exchanger with helical baffle at 10° helix angle presents the best performance among the others variant helical baffles


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Swanand Gaikwad ◽  
Ashish Parmar

AbstractHeat exchangers possess a significant role in energy transmission and energy generation in most industries. In this work, a three-dimensional simulation has been carried out of a shell and tube heat exchanger (STHX) consisting of segmental baffles. The investigation involves using the commercial code of ANSYS CFX, which incorporates the modeling, meshing, and usage of the Finite Element Method to yield numerical results. Much work is available in the literature regarding the effect of baffle cut and baffle spacing as two different entities, but some uncertainty pertains when we discuss the combination of these two parameters. This study aims to find an appropriate mix of baffle cut and baffle spacing for the efficient functioning of a shell and tube heat exchanger. Two parameters are tested: the baffle cuts at 30, 35, 40% of the shell-inside diameter, and the baffle spacing’s to fit 6,8,10 baffles within the heat exchanger. The numerical results showed the role of the studied parameters on the shell side heat transfer coefficient and the pressure drop in the shell and tube heat exchanger. The investigation shows an increase in the shell side heat transfer coefficient of 13.13% when going from 6 to 8 baffle configuration and a 23.10% acclivity for the change of six baffles to 10, for a specific baffle cut. Evidence also shows a rise in the pressure drop with an increase in the baffle spacing from the ranges of 44–46.79%, which can be controlled by managing the baffle cut provided.


2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Jiuyi Liu ◽  
Caifu Qian ◽  
Huifang Li

Thermal stress is an important factor influencing the strength of a heat exchanger tubesheet. Some studies have indicated that, even in floating-head or U-tube heat exchangers, the thermal stress at the tubesheet is significant in magnitude. For exploring the value, distribution, and the influence factors of the thermal stress at the tubesheet of these kind heat exchangers, a tubesheet and triangle arranged tubes with the tube diameter of 25 mm were numerically analyzed. Specifically, the thermal stress at the tubesheet center is concentrated and analyzed with changing different parameters of the tubesheet, such as the temperature difference between tube-side and shell-side fluids, tubesheet diameter, thickness, and the tube-hole area ratio. It is found that the thermal stress of the tubesheet of floating-head or U-tube heat exchanger was comparable in magnitude with that produced by pressures, and the distribution of the thermal stress depends on the tube-hole area and the temperature inside the tubes. The thermal stress at the center of the tubesheet surface is high when tube-hole area ratio is very low. And with increasing the tube-hole area ratio, the stress first decreases rapidly and then increases linearly. A formula was numerically fitted for calculating the thermal stress at the tubesheet surface center which may be useful for the strength design of the tubesheet of floating-head or U-tube heat exchangers when considering the thermal stress. Numerical tests show that the fitted formula can meet the accuracy requirements for engineering applications.


2013 ◽  
Vol 378 ◽  
pp. 459-465
Author(s):  
Ya Guo Lu ◽  
Peng Fei Zhu

A calculate method based on ε-NTU model for heat transfer characteristics of shell-tube fuel-cooled heat exchanger of aero-engine lubrication system was built. The heat convection coefficient was obtained by a dimensionless curve (Re~StPr2/3), which was detailed introduced as well. A case study was executed at last. The absolute error of the outlet lubrication of the tube side and the shell side between the value of calculation and experiment was less than ±10°C, and the relative error was less than 6.5%. The absolute error of the heat transferred between calculation and experiment was less than ±0.9kW, and the relative error was less than 7.4%. It indicates that the mothod is available for the investigation of heat transfer characteristics of shell-tube fuel-cooled heat exchanger.


Author(s):  
Yan Ren ◽  
Wei-hua Cai ◽  
Yi-qiang Jiang ◽  
Wei-dong Wu ◽  
Qi-guo Yang ◽  
...  

2021 ◽  
Author(s):  
praveen math

Abstract Shell and Tube heat exchangers are having special importance in boilers, oil coolers, condensers, pre-heaters. They are also widely used in process applications as well as the refrigeration and air conditioning industry. The robustness and medium weighted shape of Shell and Tube heat exchangers make them well suited for high pressure operations. The aim of this study is to experiment, validate and to provide design suggestion to optimize the shell and tube heat exchanger (STHE). The heat exchanger is made of acrylic material with 2 baffles and 7 tubes made of stainless steel. Hot fluid flows inside the tube and cold fluid flows over the tube in the shell. 4 K-type thermocouples were used to read the hot and cold fluids inlet and outlet temperatures. Experiments were carried out for various combinations of hot and cold water flow rates with different hot water inlet temperatures. The flow conditions are limited to the lab size model of the experimental setup. A commercial CFD code was used to study the thermal and hydraulic flow field inside the shell and tubes. CFD methodology is developed to appropriately represent the flow physics and the procedure is validated with the experimental results. Turbulent flow in tube side is observed for all flow conditions, while the shell side has laminar flow except for extreme hot water temperatures. Hence transition k-kl-omega model was used to predict the flow better for transition cases. Realizable k- epsilon model with non-equilibrium wall function was used for turbulent cases. Temperature and velocity profiles are examined in detail and observed that the flow remains almost uniform to the tubes thus limiting heat transfer. Approximately 2/3 rd of the shell side flow does not surround the tubes due to biased flow contributing to reduced overall heat transfer and increased pressure loss. On the basis of these findings an attempt has been made to enhance the heat transfer by inducing turbulence in the shel l side flow. The two baffles were rotated in opposite direction to each other to achieve more circulation in the shell side flow and provide more contact with tube surface. Various positions of the baffles were simulated and studied using CFD analysis and th e results are summarized with respect to heat transfer and pressure loss.


2013 ◽  
Vol 655-657 ◽  
pp. 461-464 ◽  
Author(s):  
Su Fang Song

The three-dimensional model of heat exchangers with continuous helical baffles was built. The fluid flow dynamics and heat transfer of shell side in the helical baffled heat exchanger were simulated and calculated. The velocity, pressure and temperature distributions were achieved. The simulation shows that with the same baffle pitch, shell-side heat transfer coefficient increased by 25% and the pressure drop decreases by 18% in helical baffled heat exchanger compared with segmental helical baffles. With the analyzing of the flow and heat transfer in heat exchanger in 5 different inclination angles from 11°to 21°, it can be found that both shell side heat transfer coefficient and pressure drop will reduce respectively by 86% and 52% with the increases 11°to 21°of the inclination angles. Numerical simulation provided reliable theoretical reference for further engineering research of heat exchanger with helical baffles.


Sign in / Sign up

Export Citation Format

Share Document