Association between blood pressure and short-term exposure to ambient air pollutants in Beijing, China

2021 ◽  
pp. 101293
Author(s):  
Licheng Zhang ◽  
Jingbo Zhang ◽  
Shuo Chen ◽  
Xue Tian ◽  
Yuhan Zhao ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
You-Jung Choi ◽  
Sun-Hwa Kim ◽  
Si-Hyuck Kang ◽  
Sun-Young Kim ◽  
Ok-Jin Kim ◽  
...  

AbstractElevated blood pressure (BP) has been proposed as a possible pathophysiological mechanism linking exposure to ambient air pollution and the increased risk of cardiovascular mortality and morbidity. In this study, we investigated the hourly relationship between ambient air pollutants and BP. BP measurements were extracted from the electronic health record database of the Seoul National University Bundang Hospital from February 2015 to June 2017. A total of 98,577 individual BP measurements were matched to the hourly levels of air pollutants. A generalized additive model was constructed for hour lags of 0–8 of air pollutants adjusting for age, sex, meteorological variables, and time trend. Systolic BP was shown to be significantly lower at 2–4 hours and 3–5 hours after increased levels of SO2 and CO, respectively (0.24 mmHg and 0.26 mmHg for an interquartile range, respectively). In contrast, O3 and NO2 were associated with significantly increased systolic BP at 3–5 lag hours and at 0–2 lag hours, respectively. BP elevation in association with O3 and NO2 was shown to be significantly greater in hypertensive patients than normotensive subjects. Our findings suggest that short-term exposure to air pollution may be associated with elevated BP.


2022 ◽  
pp. 112600
Author(s):  
Rodrigo Ugalde-Resano ◽  
Horacio Riojas-Rodríguez ◽  
José Luis Texcalac-Sangrador ◽  
Julio Cruz ◽  
Magali Hurtado-Díaz

2020 ◽  
Author(s):  
Ching-Chang Huang ◽  
Ying-Hsien Chen ◽  
Chi-Sheng Hung ◽  
Jen-Kuang Lee ◽  
Tse-Pin Hsu ◽  
...  

BACKGROUND The association between short-term exposure to ambient air pollution and blood pressure has been inconsistent, as reported in the literature. OBJECTIVE This study aimed to investigate the relationship between short-term ambient air pollution exposure and patient-level home blood pressure (HBP). METHODS Patients with chronic cardiovascular diseases from a telehealth care program at a university-affiliated hospital were enrolled as the study population. HBP was measured by patients or their caregivers. Hourly meteorological data (including temperature, relative humidity, wind speed, and rainfall) and ambient air pollution monitoring data (including CO, NO<sub>2</sub>, particulate matter with a diameter of &lt;10 µm, particulate matter with a diameter of &lt;2.5 µm, and SO<sub>2</sub>) during the same time period were obtained from the Central Weather Bureau and the Environmental Protection Administration in Taiwan, respectively. A stepwise multivariate repeated generalized estimating equation model was used to assess the significant factors for predicting systolic and diastolic blood pressure (SBP and DBP). RESULTS A total of 253 patients and 110,715 HBP measurements were evaluated in this study. On multivariate analysis, demographic, clinical, meteorological factors, and air pollutants significantly affected the HBP (both SBP and DBP). All 5 air pollutants evaluated in this study showed a significant, nonlinear association with both home SBP and DBP. Compared with demographic and clinical factors, environmental factors (meteorological factors and air pollutants) played a minor yet significant role in the regulation of HBP. CONCLUSIONS Short-term exposure to ambient air pollution significantly affects HBP in patients with chronic cardiovascular disease.


Author(s):  
Yang Ni ◽  
Wang Song ◽  
Yu Bai ◽  
Tao Liu ◽  
Guoxing Li ◽  
...  

(1) Background: Years of life lost (YLL) as a surrogate of health is important for supporting ambient air pollution related policy decisions. However, there has been little comprehensive evaluation of the short-term impact of air pollution on cause-specific YLL, especially in China. Hence in this study, we selected China as sentinel region in order to conduct a meta-analysis to evaluate disease-specific YLL due to all the main ambient air pollutants. (2) Methods: A meta-analysis was conducted to evaluate disease-specific YLL due to the main ambient air pollutants in China, and 19 studies were included. We conducted methodological quality and risk of bias assessment for each included study as well as for heterogeneity and publication bias. Subgroup analysis and sensitivity analysis were also performed. (3) Results: Meta-analysis indicated that increases in PM2.5, PM10, SO2 and NO2 were associated with 1.99–5.84 years increase in YLL from non-accidental diseases. The increase in YLL to cardiovascular disease (CVD) was associated with PM10 and NO2, and the increase in YLL to respiratory diseases (RD) was associated with PM10. (4) Conclusions: Ambient air pollution was observed to be associated with several cause-specific YLL, increasing especially for elderly people and females.


10.2196/26605 ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. e26605
Author(s):  
Ching-Chang Huang ◽  
Ying-Hsien Chen ◽  
Chi-Sheng Hung ◽  
Jen-Kuang Lee ◽  
Tse-Pin Hsu ◽  
...  

Background The association between short-term exposure to ambient air pollution and blood pressure has been inconsistent, as reported in the literature. Objective This study aimed to investigate the relationship between short-term ambient air pollution exposure and patient-level home blood pressure (HBP). Methods Patients with chronic cardiovascular diseases from a telehealth care program at a university-affiliated hospital were enrolled as the study population. HBP was measured by patients or their caregivers. Hourly meteorological data (including temperature, relative humidity, wind speed, and rainfall) and ambient air pollution monitoring data (including CO, NO2, particulate matter with a diameter of <10 µm, particulate matter with a diameter of <2.5 µm, and SO2) during the same time period were obtained from the Central Weather Bureau and the Environmental Protection Administration in Taiwan, respectively. A stepwise multivariate repeated generalized estimating equation model was used to assess the significant factors for predicting systolic and diastolic blood pressure (SBP and DBP). Results A total of 253 patients and 110,715 HBP measurements were evaluated in this study. On multivariate analysis, demographic, clinical, meteorological factors, and air pollutants significantly affected the HBP (both SBP and DBP). All 5 air pollutants evaluated in this study showed a significant, nonlinear association with both home SBP and DBP. Compared with demographic and clinical factors, environmental factors (meteorological factors and air pollutants) played a minor yet significant role in the regulation of HBP. Conclusions Short-term exposure to ambient air pollution significantly affects HBP in patients with chronic cardiovascular disease.


Author(s):  
Zahra Namvar ◽  
Mostafa Hadei ◽  
Seyed Saeed Hashemi ◽  
Elahe Shahhosseini ◽  
Philip K. Hopke ◽  
...  

Introduction: Air pollution is one of the main causes for the significant increase of respiratory infections in Tehran. In the present study, we investigated the associations between short-term exposure to ambient air pollutants with the hospital admissions and deaths. Materials and methods: Health data from 39915 hospital admissions and 2459 registered deaths associated with these hospital admissions for respiratory infections were obtained from the Ministry of Health and Medical Education during 2014-2017. We used the distributed lag non-linear model (DLNM) for the analyses. Results: There was a statistically positive association between PM2.5 and AURI in the age group of 16 years and younger at lags 6 (RR 1.31; 1.05-1.64) and 7 (RR 1.50; 1.09-2.06). AURI admissions was associated with O3 in the age group of 16 and 65 years at lag 7 with RR 1.13 (1.00-1.27). ALRI admissions was associated with CO in the age group of 65 years and older at lag 0 with RR 1.12 (1.02-1.23). PM10 was associated with ALRI daily hospital admissions at lag 0 for males. ALRI admissions were associated with NO2 for females at lag 0. There was a positive association between ALRI deaths and SO2 in the age group of 65 years and older at lags 4 and 5 with RR 1.04 (1.00-1.09) and 1.03 (1.00-1.07), respectively. Conclusion: Exposure to outdoor air pollutants including PM10, PM2.5, SO2, NO2, O3, and CO was associated with hospital admissions for AURI and ALRI at different lags. Moreover, exposure to SO2 was associated with deaths for ALRI.


Sign in / Sign up

Export Citation Format

Share Document