scholarly journals Years of Life Lost (YLL) Due to Short-Term Exposure to Ambient Air Pollution in China: A Systematic Review and Meta-Analysis

Author(s):  
Yang Ni ◽  
Wang Song ◽  
Yu Bai ◽  
Tao Liu ◽  
Guoxing Li ◽  
...  

(1) Background: Years of life lost (YLL) as a surrogate of health is important for supporting ambient air pollution related policy decisions. However, there has been little comprehensive evaluation of the short-term impact of air pollution on cause-specific YLL, especially in China. Hence in this study, we selected China as sentinel region in order to conduct a meta-analysis to evaluate disease-specific YLL due to all the main ambient air pollutants. (2) Methods: A meta-analysis was conducted to evaluate disease-specific YLL due to the main ambient air pollutants in China, and 19 studies were included. We conducted methodological quality and risk of bias assessment for each included study as well as for heterogeneity and publication bias. Subgroup analysis and sensitivity analysis were also performed. (3) Results: Meta-analysis indicated that increases in PM2.5, PM10, SO2 and NO2 were associated with 1.99–5.84 years increase in YLL from non-accidental diseases. The increase in YLL to cardiovascular disease (CVD) was associated with PM10 and NO2, and the increase in YLL to respiratory diseases (RD) was associated with PM10. (4) Conclusions: Ambient air pollution was observed to be associated with several cause-specific YLL, increasing especially for elderly people and females.

Author(s):  
Lisha Luo ◽  
Yunquan Zhang ◽  
Junfeng Jiang ◽  
Hanghang Luan ◽  
Chuanhua Yu ◽  
...  

In this study, we estimated the short-term effects of ambient air pollution on respiratory disease hospitalization in Taiyuan, China. Daily data of respiratory disease hospitalization, daily concentration of ambient air pollutants and meteorological factors from 1 October 2014 to 30 September 2017 in Taiyuan were included in our study. We conducted a time-series study design and applied a generalized additive model to evaluate the association between every 10-μg/m3 increment of air pollutants and percent increase of respiratory disease hospitalization. A total of 127,565 respiratory disease hospitalization cases were included in this study during the present period. In single-pollutant models, the effect values in multi-day lags were greater than those in single-day lags. PM2.5 at lag02 days, SO2 at lag03 days, PM10 and NO2 at lag05 days were observed to be strongly and significantly associated with respiratory disease hospitalization. No significant association was found between O3 and respiratory disease hospitalization. SO2 and NO2 were still significantly associated with hospitalization after adjusting for PM2.5 or PM10 into two-pollutant models. Females and younger population for respiratory disease were more vulnerable to air pollution than males and older groups. Therefore, some effective measures should be taken to strengthen the management of the ambient air pollutants, especially SO2 and NO2, and to enhance the protection of the high-risk population from air pollutants, thereby reducing the burden of respiratory disease caused by ambient air pollution.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
You-Jung Choi ◽  
Sun-Hwa Kim ◽  
Si-Hyuck Kang ◽  
Sun-Young Kim ◽  
Ok-Jin Kim ◽  
...  

AbstractElevated blood pressure (BP) has been proposed as a possible pathophysiological mechanism linking exposure to ambient air pollution and the increased risk of cardiovascular mortality and morbidity. In this study, we investigated the hourly relationship between ambient air pollutants and BP. BP measurements were extracted from the electronic health record database of the Seoul National University Bundang Hospital from February 2015 to June 2017. A total of 98,577 individual BP measurements were matched to the hourly levels of air pollutants. A generalized additive model was constructed for hour lags of 0–8 of air pollutants adjusting for age, sex, meteorological variables, and time trend. Systolic BP was shown to be significantly lower at 2–4 hours and 3–5 hours after increased levels of SO2 and CO, respectively (0.24 mmHg and 0.26 mmHg for an interquartile range, respectively). In contrast, O3 and NO2 were associated with significantly increased systolic BP at 3–5 lag hours and at 0–2 lag hours, respectively. BP elevation in association with O3 and NO2 was shown to be significantly greater in hypertensive patients than normotensive subjects. Our findings suggest that short-term exposure to air pollution may be associated with elevated BP.


Author(s):  
Juha Baek ◽  
Bita A. Kash ◽  
Xiaohui Xu ◽  
Mark Benden ◽  
Jon Roberts ◽  
...  

Few studies have evaluated the association between ambient air pollution and hospital readmissions among children with asthma, especially in low-income communities. This study examined the short-term effects of ambient air pollutants on hospital readmissions for pediatric asthma in South Texas. A time-stratified case-crossover study was conducted using the hospitalization data from a children’s hospital and the air pollution data, including particulate matter 2.5 (PM2.5) and ozone concentrations, from the Centers for Disease Control and Prevention between 2010 and 2014. A conditional logistic regression analysis was performed to investigate the association between ambient air pollution and hospital readmissions, controlling for outdoor temperature. We identified 111 pediatric asthma patients readmitted to the hospital between 2010 and 2014. The single-pollutant models showed that PM2.5 concentration had a significant positive effect on risk for hospital readmissions (OR = 1.082, 95% CI = 1.008–1.162, p = 0.030). In the two-pollutant models, the increased risk of pediatric readmissions for asthma was significantly associated with both elevated ozone (OR = 1.023, 95% CI = 1.001–1.045, p = 0.042) and PM2.5 concentrations (OR = 1.080, 95% CI = 1.005–1.161, p = 0.036). The effects of ambient air pollutants on hospital readmissions varied by age and season. Our findings suggest that short-term (4 days) exposure to air pollutants might increase the risk of preventable hospital readmissions for pediatric asthma patients.


Author(s):  
Miao Huang ◽  
Jingyuan Chen ◽  
Yiping Yang ◽  
Hong Yuan ◽  
Zhijun Huang ◽  
...  

Background Previous studies have investigated the association of ambient air pollution with blood pressure (BP) in children and adolescents, however, the results are not consistent. We conducted a systematic review and meta‐analysis to assess the relationship between short‐term and long‐term ambient air pollutant exposure with BP values among children and adolescents. Methods and Results We searched PubMed, Web of Science, and Embase before September 6, 2020. Two reviewers independently searched and selected studies, extracted data, and assessed study quality. The studies were divided into groups by composition of air pollutants (NO 2 , particulate matter (PM) with diameter ≤10 μm or ≤2.5 μm) and length of exposure. The beta regression coefficients (β) and their 95% CIs were calculated to evaluate the strength of the effect with each 10 μg/m 3 increase in air pollutants. Out of 36 650 articles, 14 articles were included in this meta‐analysis. The meta‐analysis showed short‐term exposure to PM with diameter ≤10 μm (β=0.267; 95% CI, 0.033‒0.501) was significantly associated with elevated systolic BP values. In addition, long‐term exposure to PM with diameter ≤2.5 μm (β=1.809; 95% CI, 0.962‒2.655), PM with diameter ≤10 μm (β=0.526; 95% CI, 0.095‒0.958), and NO 2 (β=0.754; 95% CI, 0.541‒0.968) were associated with systolic BP values and long‐term exposure to PM with diameter ≤2.5 μm (β=0.931; 95% CI, 0.157‒1.705), and PM with diameter ≤10 μm (β=0.378; 95% CI, 0.022‒0.735) was associated with diastolic BP. Conclusions Our study indicates that both short‐term and long‐term exposure to some ambient air pollutants may increase BP values among children and adolescents.


2020 ◽  
Author(s):  
Ching-Chang Huang ◽  
Ying-Hsien Chen ◽  
Chi-Sheng Hung ◽  
Jen-Kuang Lee ◽  
Tse-Pin Hsu ◽  
...  

BACKGROUND The association between short-term exposure to ambient air pollution and blood pressure has been inconsistent, as reported in the literature. OBJECTIVE This study aimed to investigate the relationship between short-term ambient air pollution exposure and patient-level home blood pressure (HBP). METHODS Patients with chronic cardiovascular diseases from a telehealth care program at a university-affiliated hospital were enrolled as the study population. HBP was measured by patients or their caregivers. Hourly meteorological data (including temperature, relative humidity, wind speed, and rainfall) and ambient air pollution monitoring data (including CO, NO<sub>2</sub>, particulate matter with a diameter of &lt;10 µm, particulate matter with a diameter of &lt;2.5 µm, and SO<sub>2</sub>) during the same time period were obtained from the Central Weather Bureau and the Environmental Protection Administration in Taiwan, respectively. A stepwise multivariate repeated generalized estimating equation model was used to assess the significant factors for predicting systolic and diastolic blood pressure (SBP and DBP). RESULTS A total of 253 patients and 110,715 HBP measurements were evaluated in this study. On multivariate analysis, demographic, clinical, meteorological factors, and air pollutants significantly affected the HBP (both SBP and DBP). All 5 air pollutants evaluated in this study showed a significant, nonlinear association with both home SBP and DBP. Compared with demographic and clinical factors, environmental factors (meteorological factors and air pollutants) played a minor yet significant role in the regulation of HBP. CONCLUSIONS Short-term exposure to ambient air pollution significantly affects HBP in patients with chronic cardiovascular disease.


10.2196/26605 ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. e26605
Author(s):  
Ching-Chang Huang ◽  
Ying-Hsien Chen ◽  
Chi-Sheng Hung ◽  
Jen-Kuang Lee ◽  
Tse-Pin Hsu ◽  
...  

Background The association between short-term exposure to ambient air pollution and blood pressure has been inconsistent, as reported in the literature. Objective This study aimed to investigate the relationship between short-term ambient air pollution exposure and patient-level home blood pressure (HBP). Methods Patients with chronic cardiovascular diseases from a telehealth care program at a university-affiliated hospital were enrolled as the study population. HBP was measured by patients or their caregivers. Hourly meteorological data (including temperature, relative humidity, wind speed, and rainfall) and ambient air pollution monitoring data (including CO, NO2, particulate matter with a diameter of <10 µm, particulate matter with a diameter of <2.5 µm, and SO2) during the same time period were obtained from the Central Weather Bureau and the Environmental Protection Administration in Taiwan, respectively. A stepwise multivariate repeated generalized estimating equation model was used to assess the significant factors for predicting systolic and diastolic blood pressure (SBP and DBP). Results A total of 253 patients and 110,715 HBP measurements were evaluated in this study. On multivariate analysis, demographic, clinical, meteorological factors, and air pollutants significantly affected the HBP (both SBP and DBP). All 5 air pollutants evaluated in this study showed a significant, nonlinear association with both home SBP and DBP. Compared with demographic and clinical factors, environmental factors (meteorological factors and air pollutants) played a minor yet significant role in the regulation of HBP. Conclusions Short-term exposure to ambient air pollution significantly affects HBP in patients with chronic cardiovascular disease.


Author(s):  
Qiwei Yu ◽  
Liqiang Zhang ◽  
Kun Hou ◽  
Jingwen Li ◽  
Suhong Liu ◽  
...  

Exposure to air pollution has been suggested to be associated with an increased risk of women’s health disorders. However, it remains unknown to what extent changes in ambient air pollution affect gynecological cancer. In our case–control study, the logistic regression model was combined with the restricted cubic spline to examine the association of short-term exposure to air pollution with gynecological cancer events using the clinical data of 35,989 women in Beijing from December 2008 to December 2017. We assessed the women’s exposure to air pollutants using the monitor located nearest to each woman’s residence and working places, adjusting for age, occupation, ambient temperature, and ambient humidity. The adjusted odds ratios (ORs) were examined to evaluate gynecologic cancer risk in six time windows (Phase 1–Phase 6) of women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the highest ORs were found in Phase 4 (240 days). Then, the higher adjusted ORs were found associated with the increased concentrations of each pollutant (PM2.5, CO, O3, and SO2) in Phase 4. For instance, the adjusted OR of gynecological cancer risk for a 1.0-mg m−3 increase in CO exposures was 1.010 (95% CI: 0.881–1.139) below 0.8 mg m−3, 1.032 (95% CI: 0.871–1.194) at 0.8–1.0 mg m−3, 1.059 (95% CI: 0.973–1.145) at 1.0–1.4 mg m−3, and 1.120 (95% CI: 0.993–1.246) above 1.4 mg m−3. The ORs calculated in different air pollution levels accessed us to identify the nonlinear association between women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the gynecological cancer risk. This study supports that the gynecologic risks associated with air pollution should be considered in improved public health preventive measures and policymaking to minimize the dangerous effects of air pollution.


Sign in / Sign up

Export Citation Format

Share Document