Soil metagenomics reveals differences under conventional and no-tillage with crop rotation or succession

2013 ◽  
Vol 72 ◽  
pp. 49-61 ◽  
Author(s):  
Renata Carolini Souza ◽  
Mauricio Egídio Cantão ◽  
Ana Tereza Ribeiro Vasconcelos ◽  
Marco Antonio Nogueira ◽  
Mariangela Hungria
2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Blessing Mhlanga ◽  
Laura Ercoli ◽  
Elisa Pellegrino ◽  
Andrea Onofri ◽  
Christian Thierfelder

AbstractConservation agriculture has been promoted to sustainably intensify food production in smallholder farming systems in southern Africa. However, farmers have rarely fully implemented all its components, resulting in different combinations of no-tillage, crop rotation, and permanent soil cover being practiced, thus resulting in variable yield responses depending on climatic and soil conditions. Therefore, it is crucial to assess the effect of conservation agriculture components on yield stability. We hypothesized that the use of all three conservation agriculture components would perform the best, resulting in more stable production in all environments. We evaluated at, eight trial locations across southern Africa, how partial and full implementation of these components affected crop yield and yield stability compared with conventional tillage alone or combined with mulching and/or crop rotation. Grain yield and shoot biomass of maize and cowpea were recorded along with precipitation for 2 to 5 years. Across different environments, the addition of crop rotation and mulch to no-tillage increased maize grain by 6%, and the same practices added to conventional tillage led to 13% yield increase. Conversely, adding only mulch or crop rotation to no-tillage or conventional tillage led to lower or equal maize yield. Stability analyses based on Shukla’s index showed for the first time that the most stable systems are those in which mulch is added without crop rotation. Moreover, the highest yielding systems were the least stable. Finally, additive main effects and multiplicative interaction analysis allowed clarifying that mulch added to no-tillage gives stable yields on sandy soil with high rainfall. Similarly, mulch added to conventional tillage gives stable yield on sandy soil, but under low rainfall. This is the first study that highlighted the crucial role of mulch to enhance the stability and resilience of cropping systems in southern Africa, supporting their adaptability to climate change.


Author(s):  
Tiago S. Telles ◽  
Ana J. Righetto ◽  
Marco A. P. Lourenço ◽  
Graziela M. C. Barbosa

ABSTRACT The no-tillage system participatory quality index aims to evaluate the quality and efficiency of soil management under no-tillage systems and consists of a weighted sum of eight indicators: intensity of crop rotation, diversity of crop rotation, persistence of crop residues in the soil surface, frequency of soil tillage, use of agricultural terraces, evaluation of soil conservation, balance of soil fertilization and time of adoption of the no-tillage system. The aim of this study was to assess the extent to which these indicators correlate with the no-tillage system participatory quality index and to characterize the farmers who participated in the research. The data used were provided by ITAIPU Binacional for the indicators of the no-tillage system participatory quality index II. Descriptive analyses were performed, and the Pearson correlation coefficient between the index and each indicator was calculated. To assess the relationship between the indicators and the farmers’ behavior toward the indicators, principal component analysis and cluster analysis were performed. Although all correlations are significant at p-value ≤ 0.05, some correlations are weak, indicating a need for improvement of the index. The principal component analysis identified three principal components, which explained 66% of the variability of the data, and the cluster analysis separated the 121 farmers into five groups. It was verified that the no-tillage system participatory quality index II has some limitations and should therefore be reevaluated to increase its efficiency as an indicator of the quality of the no-tillage system.


Agro-Science ◽  
2007 ◽  
Vol 3 (2) ◽  
Author(s):  
S R Viera ◽  
J S Mbagwu ◽  
M C Alves ◽  
S C Dechen ◽  
I C De Maria ◽  
...  

2020 ◽  
Vol 8 (2) ◽  
pp. 185-194 ◽  
Author(s):  
Ana Clara Sokolowski ◽  
Barbara Prack McCormick ◽  
Javier De Grazia ◽  
José E. Wolski ◽  
Hernán A. Rodríguez ◽  
...  

2014 ◽  
Vol 38 (4) ◽  
pp. 1293-1303 ◽  
Author(s):  
João Tavares Filho ◽  
Thadeu Rodrigues de Melo ◽  
Wesley Machado ◽  
Bruno Vieira Maciel

Soils are the foundation of terrestrial ecosystems and their role in food production is fundamental, although physical degradation has been observed in recent years, caused by different cultural practices that modify structures and consequently the functioning of soils. The objective of this study was to evaluate possible structural changes and degradation in an Oxisol under different managements for 20 years: no-tillage cultivation with and without crop rotation, perennial crop and conventional tillage, plus a forested area (reference). Initially, the crop profile was described and subsequently, 10 samples per management system and forest soil were collected to quantify soil organic matter, flocculation degree, bulk density, and macroporosity. The results indicated structural changes down to a soil depth of 50 cm, with predominance of structural units ∆μ (intermediate compaction level) under perennial crop and no-tillage crop rotation, and of structural units ∆ (compacted) under conventional tillage and no-tillage. The soil was increasingly degraded in the increasing order: forest => no-tillage crop rotation => perennial crop => no-tillage without crop rotation => conventional tillage. In all managements, the values of organic matter and macroporosity were always below and bulk density always above those of the reference area (forest) and, under no-tillage crop rotation and perennial crop, the flocculation degree was proportionally equal to that of the reference area.


2021 ◽  
Vol 5 ◽  
Author(s):  
Tindall Ouverson ◽  
Jed Eberly ◽  
Tim Seipel ◽  
Fabian D. Menalled ◽  
Suzanne L. Ishaq

Industrialized agriculture results in simplified landscapes where many of the regulatory ecosystem functions driven by soil biological and physicochemical characteristics have been hampered or replaced with intensive, synthetic inputs. To restore long-term agricultural sustainability and soil health, soil should function as both a resource and a complex ecosystem. In this study, we examined how cropping systems impact soil bacterial community diversity and composition, important indicators of soil ecosystem health. Soils from a representative cropping system in the semi-arid Northern Great Plains were collected in June and August of 2017 from the final phase of a 5-year crop rotation managed either with chemical inputs and no-tillage, as a USDA-certified organic tillage system, or as a USDA-certified organic sheep grazing system with reduced tillage intensity. DNA was extracted and sequenced for bacteria community analysis via 16S rRNA gene sequencing. Bacterial richness and diversity decreased in all farming systems from June to August and was lowest in the chemical no-tillage system, while evenness increased over the sampling period. Crop species identity did not affect bacterial richness, diversity, or evenness. Conventional no-till, organic tilled, and organic grazed management systems resulted in dissimilar microbial communities. Overall, cropping systems and seasonal changes had a greater effect on microbial community structure and diversity than crop identity. Future research should assess how the rhizobiome responds to the specific phases of a crop rotation, as differences in bulk soil microbial communities by crop identity were not detectable.


2020 ◽  
Vol 12 (17) ◽  
pp. 6978
Author(s):  
Anna Vatsanidou ◽  
Christos Kavalaris ◽  
Spyros Fountas ◽  
Nikolaos Katsoulas ◽  
Theofanis Gemtos

A three-year experiment was carried out in Central Greece to assess the use of different tillage practices (Conventional, Reduced, and No tillage) for seedbed preparation, in a double cropping per year rotation of irrigated and rainfed energy crops for biomass production for first- and second-generation biofuel production. A life cycle assessment (LCA) study was performed for the first year of crop rotation to evaluate the environmental impact of using different tillage practices, identifying the processes with greater influence on the overall environmental burden (hotspots) and demonstrating the potential environmental benefits from the land management change. LCA results revealed that fertilizer application and diesel fuel consumption, as well as their production stages, were the hot-spot processes for each treatment. In the present study, different tillage treatments compared using mass- and area-based functional unit (FU), revealing that reduced tillage, using strip tillage for spring crop and disc harrow for winter crops, and no tillage treatment had the best environmental performance, respectively. Comparison between the prevailing in the area monoculture cotton crop with the proposed double energy crop rotation adopting conservation tillage practices, using mass and energy value FU, showed that cotton crop had higher environmental impact.


Agriculture ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 208 ◽  
Author(s):  
Dorota Gawęda ◽  
Małgorzata Haliniarz ◽  
Urszula Bronowicka-Mielniczuk ◽  
Justyna Łukasz

This study evaluated weed infestation and health of the soybean crop grown in crop rotation (CR) and monoculture (CM) under conventional tillage (CT) and no-tillage (NT) conditions. The research proved that growing soybean in monoculture and under no-tillage conditions increases weed infestation and infection of soybean with fungal diseases. In these treatments, increased numbers of most of the dominant species were also found. A significantly higher percentage of monocotyledonous species and a much lower percentage of dicotyledonous ones in total weed dry weight were shown in the CR treatment relative to CM and in the NT system compared to CT. The biodiversity of the weed community was similar in monoculture and crop rotation, and slightly greater in the NT system in comparison with CT conditions. In both tillage systems, Amaranthus retroflexus was the weed species that most infested the soybean crop. In soybean grown after itself, Amaranthus retroflexus was the weed that occurred in the greatest numbers, while, in crop rotation, this was Echinochloa crus-galli. In all years of the study, soybean was infected with Septoria glycines to the highest degree, which was followed by Cercospora sojina, whereas infection with Ascochyta sp. was the lowest. Weather conditions in individual years of the study were proven to affect weed infestation and infection of soybean with fungal diseases. The study results prove that cropping systems and tillage systems significantly affect weed infestation and health of the soybean crop.


Sign in / Sign up

Export Citation Format

Share Document