Atomistic modeling of solubilization of carbon nanotubes by non-covalent functionalization with poly(p-phenylenevinylene-co-2,5-dioctoxy-m-phenylenevinylene)

2004 ◽  
Vol 227 (1-4) ◽  
pp. 349-363 ◽  
Author(s):  
M Grujicic ◽  
G Cao ◽  
W.N Roy
Soft Matter ◽  
2009 ◽  
Vol 5 (5) ◽  
pp. 948 ◽  
Author(s):  
Mohyeddin Assali ◽  
Manuel Pernía Leal ◽  
Inmaculada Fernández ◽  
Rachid Baati ◽  
Charles Mioskowski ◽  
...  

Reactions ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 473-485
Author(s):  
Felipe Wasem Klein ◽  
Jean-Philippe Lamps ◽  
Matthieu Paillet ◽  
Pierre Petit ◽  
Philippe J. Mésini

The functionalization of carbon nanotubes by polymers necessitates two steps, first their modification by oxidizing them or by covalently attaching small compounds to them, then the growth of the polymer chains from these anchors or their grafting onto them. In order to better control the process and the rate of functionalization, we develop polymers able to covalently react with the carbon nanotubes by their side chains in one step. We describe the synthesis of a copolymer of dodecylthiophene and its analogue bearing an aniline group at the end of the dodecyl side chain. This copolymer can functionalize single-walled carbon nanotubes (SWNTs) non-covalently and disperse more SWNTs than its hexyl analogues. UV-Vis and fluorescence spectroscopies show that in these non-covalent hybrids, the polymer forms p-stacked aggregates on the SWNTs. The non-covalent hybrids can be transformed into covalent ones by diazonium coupling. In these covalent hybrids the polymer is no longer p-stacked. According to Raman spectroscopy, the conformation of the poly(3-hexylthiophene) backbone is more ordered in the non-covalent hybrids than in the covalent ones.


Soft Matter ◽  
2011 ◽  
Vol 7 (19) ◽  
pp. 9505 ◽  
Author(s):  
Nanda Gopal Sahoo ◽  
Henry Kuo Feng Cheng ◽  
Hongqian Bao ◽  
Yongzheng Pan ◽  
Lin Li ◽  
...  

2014 ◽  
Vol 105 (1) ◽  
pp. 013103 ◽  
Author(s):  
Jiwuer Jilili ◽  
Ayjamal Abdurahman ◽  
Oğuz Gülseren ◽  
Udo Schwingenschlögl

2007 ◽  
Vol 7 (9) ◽  
pp. 3081-3088 ◽  
Author(s):  
Tadeusz Lemek ◽  
Józef Mazurkiewicz ◽  
Leszek Stobinski ◽  
Hong Ming Lin ◽  
Piotr Tomasik

2018 ◽  
Vol 38 (6) ◽  
pp. 537-543 ◽  
Author(s):  
Minghua Li ◽  
Zhiyuan Xu ◽  
Jinyang Chen ◽  
San-E Zhu

AbstractSurface covalent functionalization of multiwalled carbon nanotubes (MWCNTs) is carried out by coupling of isocyanate-decorated MWCNTs with hydroxyl-terminated polydimethylsiloxane (HTPS), resulting in the formation of functionalized MWCNTs. Thermogravimetry analysis (TGA) of functionalized MWCNTs-1,2,3 exhibits the similar peaks in the temperature range of 200–500°C, which all correspond to the degradation of chemically grafted polyurethane on the nanotube surface. Field emission scanning electron microscopy (FE-SEM) reveals that as the polyurethane grafted onto the surface of MWCNTs loading ratio increased, the surface roughness of the MWCNTs is reduced. The chemical interaction of HTPS with isocyanate-decorated nanotube surface using the grafting-to strategy in a one-step process is confirmed by Fourier transform infrared spectroscopy (FT-IR). The surface contact angle of MWCNTs-3 with the largest content of polyurethane reached 171°, indicating that the surface covered with low surface energy polyurethane shows a super-hydrophobic property. The good dispersion of polyurethane-functionalized MWCNT-3, particularly at high content in the NR nanocomposites, is evidenced from transmission electron microscopy (TEM).


Sign in / Sign up

Export Citation Format

Share Document