X-ray triple-axis diffractometry investigation of Si/SiGe/Si on silicon-on-insulator subjected to in situ low-temperature annealing

2006 ◽  
Vol 253 (1) ◽  
pp. 124-127 ◽  
Author(s):  
T.D. Ma ◽  
H.L. Tu ◽  
G.Y. Hu ◽  
B.L. Shao ◽  
A.S. Liu
1964 ◽  
Vol 134 (2A) ◽  
pp. A485-A491 ◽  
Author(s):  
S. Mascarenhas ◽  
D. A. Wiegand ◽  
R. Smoluchowski

2004 ◽  
Vol 59 (6) ◽  
pp. 635-638 ◽  
Author(s):  
Norbert W. Mitzel ◽  
Udo Losehand

The compounds (H3C)2S, (H3Si)2S and (H3Ge)2S have been crystallised in situ on a diffractometer and their crystal structures determined by low-temperature X-ray diffraction. The molecules are present as monomers in the crystals. The aggregation of the molecules through secondary intermolecular contacts in the crystal is different: (H3C)2S is weakly associated into dimers by S···S contacts, whereas (H3Si)2S and (H3Ge)2S form Si···S and Ge···S contacts in an ice-analogous aggregation motif. Important geometry parameters are (H3C)2S: C-S 1.794(av) Å , C-S-C 99.2(1)°; (H3Si)2S: Si- S 2.143(1) Å , Si-S-Si 98.4°; (H3Ge)2S Ge-S 2.223(2) and 2.230(2) Å , Ge-S-Ge 98.2(1)◦.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 75 ◽  
Author(s):  
Jialin Zhu ◽  
Chao Deng ◽  
Yahui Liu ◽  
Nan Lin ◽  
Shifeng Liu

One hundred and thirty-five degree clock rolling significantly improves the texture homogeneity of tantalum sheets along the thickness, but a distinctly fragmented substructure is formed within {111} (<111>//normal direction (ND)) and {100} (<100>//ND) deformation grains, which is not suitable to obtain a uniform recrystallization microstructure. Thus, effects of different annealing temperatures on the microstructure and texture heterogeneity of tantalum sheets along the thickness were investigated by X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Results show that the texture distribution along θ-fiber and γ-fiber is irregular and many large grains with {111} orientation develop during annealing at high temperature. However, low-temperature annealing can not only weaken the texture intensity in the surface and the center layer but also introduce a more uniform grain size distribution. This result can be attributed to the subgrain-nucleation-dominated recrystallization mechanism induced by recovery at low temperature, and moreover, a considerable decline of recrystallization driving force resulting from the release of stored energy in the deformation matrix.


2016 ◽  
Vol 69 (10) ◽  
pp. 1186
Author(s):  
Paresh Kumar Majhi ◽  
Gregor Schnakenburg ◽  
Anthony J. Arduengo ◽  
Rainer Streubel

The synthesis of M(CO)5 complexes bearing 4-phosphonamide and 4,5-bis(phosphonamide)-imidazol-2-ylidene ligands (NHCP = phosphonamide-based N-heterocyclic carbene) is reported. Deprotonation of respective imidazolium hydrogensulfate salts with potassium tert-butoxide (KOtBu) in the presence of [M(CO)5(CH3CN)] afforded complexes with the formula [M(CO)5(NHCP)]. In a similar fashion, reaction of in situ generated NHCP with [Rh(cod)Cl]2 (cod = 1,5-cyclooctadiene) afforded a complex with the formula [Rh(cod)Cl(NHCP)]. Low-temperature deprotonation of the imidazolium NHCP·H2SO4 with potassium hexamethyldisilazide (KHMDS) in the presence of [AuCl(SMe2)] furnished the corresponding AuI NHC complex. All complexes were characterized by various spectroscopic and spectrometric methods. In addition, further structural confirmation is provided by key single-crystal X-ray structure determinations for three of the new complexes.


2020 ◽  
Vol 27 (2) ◽  
pp. 351-359
Author(s):  
I. Povedano ◽  
A. Bombardi ◽  
D. G. Porter ◽  
M. Burt ◽  
S. Green ◽  
...  

An experimental setup to perform high-pressure resonant X-ray scattering (RXS) experiments at low temperature on I16 at Diamond Light Source is presented. The setup consists of a membrane-driven diamond anvil cell, a panoramic dome and an optical system that allows pressure to be measured in situ using the ruby fluorescence method. The membrane cell, inspired by the Merrill–Bassett design, presents an asymmetric layout in order to operate in a back-scattering geometry, with a panoramic aperture of 100° in the top and a bottom half dedicated to the regulation and measurement of pressure. It is specially designed to be mounted on the cold finger of a 4 K closed-cycle cryostat and actuated at low-temperature by pumping helium into the gas membrane. The main parts of the body are machined from a CuBe alloy (BERYLCO 25) and, when assembled, it presents an approximate height of 20–21 mm and fits into a 57 mm diameter. This system allows different materials to be probed using RXS in a range of temperatures between 30 and 300 K and has been tested up to 20 GPa using anvils with a culet diameter of 500 µm under quasi-cryogenic conditions. Detailed descriptions of different parts of the setup, operation and the developed methodology are provided here, along with some preliminary experimental results.


Sign in / Sign up

Export Citation Format

Share Document