Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

2013 ◽  
Vol 280 ◽  
pp. 845-849 ◽  
Author(s):  
Yan Liu ◽  
Xiaoming Yin ◽  
Jijia Zhang ◽  
Yaming Wang ◽  
Zhiwu Han ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ali Gökhan Demir ◽  
Barbara Previtali ◽  
Carlo Alberto Biffi

The use of magnesium-alloy stents shows promise as a less intrusive solution for the treatment of cardiovascular pathologies as a result of the high biocompatibility of the material and its intrinsic dissolution in body fluids. However, in addition to requiring innovative solutions in material choice and design, these stents also require a greater understanding of the manufacturing process to achieve the desired quality with improved productivity. The present study demonstrates the manufacturing steps for the realisation of biodegradable stents in AZ31 magnesium alloy. These steps include laser microcutting with a Q-switched fibre laser for the generation of the stent mesh and subsequent chemical etching for the cleaning of kerf and surface finish. Specifically, for the laser microcutting step, inert and reactive gas cutting conditions were compared. The effect of chemical etching on the reduction in material thickness, as well as on spatter removal, was also evaluated. Prototype stents were produced, and the material composition and surface quality were characterised. The potentialities of combining nanosecond laser microcutting and chemical etching are shown and discussed.


2007 ◽  
Vol 18 (36) ◽  
pp. 365603 ◽  
Author(s):  
J Zhu ◽  
Z Liu ◽  
X L Wu ◽  
L L Xu ◽  
W C Zhang ◽  
...  

2001 ◽  
Vol 50 (12) ◽  
pp. 2382
Author(s):  
SUN JIA-LIN ◽  
TIAN GUANG-YAN ◽  
LI QIN ◽  
ZHAO JUN ◽  
GUO JI-HUA ◽  
...  

Author(s):  
A. N. Kuznetsov ◽  
S. A. Doberstein ◽  
I. V. Veremeev

This paper presents the data for frequency trimming of the single port STW resona-tors in a frequency range of 500–1000 MHz by plasma chemical etching method. The main parameters of resonators after frequency trimming are given: frequency tolerance <±100·10–6, quality factor of 8600–9500, equivalent elements needed for use of the STW resonators.


Sign in / Sign up

Export Citation Format

Share Document