Simulation study of temperature-dependent diffusion behaviors of Ag/Ag(001) at low substrate temperature

2017 ◽  
Vol 406 ◽  
pp. 277-284 ◽  
Author(s):  
Danyun Cai ◽  
Yunjie Mo ◽  
Xiaofang Feng ◽  
Yingyou He ◽  
Shaoji Jiang
1985 ◽  
Vol 46 ◽  
Author(s):  
L.T. Parechanian ◽  
E.R. Weber ◽  
T.L. Hierl

AbstractThe simultaneous molecular beam epitaxy (MBE) growth of (100) and (110) GaAs/GaAsintentionally doped with Si(∼lE16/cm^3) was studied as a function of substrate temperature, arsenic overpressure, and epitaxial growth rate. The films wereanalyzed by scanning electron and optical microscopy, liquid helium photoluminescence (PL), and electronic characterization.For the (110) epitaxal layers, an increase in morphological defect density and degradation of PL signal was observed with a lowering of the substrate temperature from 570C. Capacitance-voltage (CV) and Hall Effect measurements yield room temperature donor concentrations for the (100) films of n∼l5/cm^3 while the (110) layers exhibit electron concentrations of n∼2El7/cm^3. Hall measurements at 77K on the (100) films show the expected mobility enhancement of Si donors, whereas the (110) epi layers become insulating or greatly compensated. This behavior suggests that room temperature conduction in the (110) films is due to a deeper donor partially compensated by an acceptor level whose concentration is of the same order of magnitude as that of any electrically active Si. Temperature dependent Hall effect indicates that the activation energy of the deeper donor level lies ∼290 meV from the conduction band. PL and Hall effect indicate that the better quality (110) material is grown by increasingthe arsenic flux during MBE growth. The nature of the defects involved with the growth process will be discussed.


2009 ◽  
Vol 21 (4) ◽  
pp. 393-398
Author(s):  
P. Prathap ◽  
A. Suryanarayana Reddy ◽  
N. Revathi ◽  
Y. P. Venkata Subbaiah ◽  
K. T. Ramakrishna Reddy

Sign in / Sign up

Export Citation Format

Share Document