High-Detectivity and sensitive UVA photodetector of polycrystalline CH3NH3PbCl3 improved by α-Ga2O3 nanorod array

2022 ◽  
Vol 571 ◽  
pp. 151291
Author(s):  
Shuo Liu ◽  
Shujie Jiao ◽  
Junhua Zhang ◽  
Hongliang Lu ◽  
Dongbo Wang ◽  
...  
Keyword(s):  
2021 ◽  
pp. 149898
Author(s):  
Nguyen Duc Quang ◽  
Phuoc Cao Van ◽  
Duc Duy Le ◽  
Sutripto Majumder ◽  
Nguyen Duc Chinh ◽  
...  

2017 ◽  
Vol 902 ◽  
pp. 012025
Author(s):  
J Cottom ◽  
P Abellan ◽  
FS Hage ◽  
QM Ramasse ◽  
K Critchley ◽  
...  

2020 ◽  
Vol 20 (6) ◽  
pp. 3512-3518
Author(s):  
Saleh Khan ◽  
Xiao-He Liu ◽  
Xi Jiang ◽  
Qing-Yun Chen

Highly efficient and effective porous ZnO nanorod arrays were fabricated by annealing ZnO nanorod arrays grown on a substrate using a simple hydrothermal method. The annealing had a positive effect on the nanorod morphology, structure and optical properties. The porosity was closely related to the annealing temperature. After heating at 450 °C, pores appeared on the nanorods. It was demonstrated that the porosity could be exploited to improve the visible light absorption of ZnO and reduce the bandgap from 3.11 eV to 2.99 eV. A combination of improved charge separation and transport of the heat-treated ZnO thus led to an increase in the photoelectrochemical properties. At an irradiation intensity of 100 mW/cm−2, the photocurrent density of the porous nanorod array was approximately 1.3 mA cm−2 at 1.2 V versus Ag/AgCl, which was five times higher than that of the ZnO nanorods. These results revealed the synthesis of promising porous ZnO nanorods for photoelectrochemical applications.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1325 ◽  
Author(s):  
Ru-Jing Sun ◽  
Hung Ji Huang ◽  
Chien-Nan Hsiao ◽  
Yu-Wei Lin ◽  
Bo-Huei Liao ◽  
...  

A TiN-based substrate with high reusability presented high-sensitivity refractive index measurements in a home-built surface plasmon resonance (SPR) heterodyne phase interrogation system. TiN layers with and without additional inclined-deposited TiN (i-TiN) layers on glass substrates reached high bulk charge carrier densities of 1.28 × 1022 and 1.91 × 1022 cm−3, respectively. The additional 1.4 nm i-TiN layer of the nanorod array presented a detection limit of 6.1 × 10−7 RIU and was higher than that of the 46 nm TiN layer at 1.2 × 10−6 RIU when measuring the refractive index of a glucose solution. Furthermore, the long-term durability of the TiN-based substrate demonstrated by multiple processing experiments presented a high potential for various practical sensing applications.


2016 ◽  
Vol 94 (7) ◽  
pp. 687-692
Author(s):  
Masood Mehrabian ◽  
Naser Ghasemian

Solar cells with ZnO film/ZnO nanorods (NRs)/PbS quantum dot (QD) photoelectrodes were constructed and various properties were studied. The ZnO NRs were grown for different periods varying from 0 (ZnO film) to 30 min (ZnO NR30) and the effect of growth period on the photovoltaic properties was investigated. The cell with ZnO film/PbS QD as photoelectrode showed the open circuit voltage VOC of 0.59 V, short circuit current density JSC of 10.06 mAcm−2, and the power conversion efficiency of 3.29% under one sun illumination (air mass 1.5 global illumination at 100 mWcm−2). In a device containing of ZnO film/ZnO NR10/PbS QD (as photoelectrode), mentioned photovoltaic parameters increased to 0.61 V, 10.47 mAcm−2 and 3.81%, respectively.


Plasmonics ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. 1371-1376 ◽  
Author(s):  
Signe Damm ◽  
Frances Lordan ◽  
Antony Murphy ◽  
Mark McMillen ◽  
Robert Pollard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document